Department of Physics
National Dong Hwa University，1，Sec．2，

General Physics I，Quiz 3
PHYS1000AA，Class year103／2014 2014－11－20

Da Hsueh Rd．，Shou－Feng，Hualien，97401，Taiwan

Quiz－3 Solution

1．Solution：

（a）We know the angular momentum for rigid body
$\mathrm{L}=\mathrm{I} \dot{\omega}=\mathrm{mr}^{2}(\mathrm{v} / \mathrm{r})=\mathrm{mvr}$
Using this formula
$\mathrm{L}_{1}=6 \mathrm{X}(2 \Omega \mathrm{X} 0.25) \mathrm{X} 0.25=2.35 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
$\mathrm{L}_{2}=1.5 \mathrm{X}(2 л \mathrm{X} 0.50) \mathrm{X} 0.50=2.35 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
So the angular momentum is same for the both wheels．
（b）Yes，the torque will be produced．
（c）If the wheels rotate across XY plane the torque will be produced in Z－direction．（ Left direction）

Here，
$\mathrm{v}_{1}=2 \pi \mathrm{r}_{1} \mathrm{~m} / \mathrm{s}$
$\mathrm{v}_{2}=2 \mathrm{rr}_{2} \mathrm{~m} / \mathrm{s}$

$\mathrm{m}_{1}=6 \mathrm{~kg}, \quad \mathrm{r}_{1}=0.25 \mathrm{~m}$
$\mathrm{m}_{2}=1.5 \mathrm{~kg}, \quad \mathrm{r}_{2}=0.50 \mathrm{~m}$

2．Solution：

（a）The dimension：
$[$ Stress $]=[\mathrm{F}] /[\mathrm{A}]=\left[\mathrm{MLT}^{-2}\right] /\left[\mathrm{L}^{2}\right]=\left[\mathrm{MLT}^{-4}\right]$
Strain is the ratio of same physical quantity，like Strain＝Length／Length，so it doesn＇t have any dimension．
（b）The area of the bus $A=(20 \times 3) \mathrm{m}^{2}=60 \mathrm{~m}^{2}, F=600 \mathrm{~N}$ which is applied to A
We know，Shear stress $=F / A=600 / 60=100 \mathrm{~N} / \mathrm{m}^{2}$
Shear strain $=\Delta x / h=0.3 / 3=0.1$
Shear Modulus， $\mathrm{K}=$ Shear stress／Shear strain

$$
\mathrm{K}=100 / 0.1=1000 \mathrm{~N} / \mathrm{m}^{2}
$$

3．Solution：
（a）We know the gravitational potential，

$$
\begin{aligned}
\mathrm{V} & =-\mathrm{GM} \mathrm{~m} / \mathrm{r} \\
& =-\left(6.67 \times 10^{-11} \mathrm{X} 5.97 \times 10^{24} \times 3 \times 10^{5}\right) / 3.07 \times 10^{8} \\
& =-3.90 \times 10^{11} \mathrm{~J} \text { towards the earth. }
\end{aligned}
$$

（b）We know the gravitational force
$\mathrm{F}=\mathrm{GM} \mathrm{m} / \mathrm{r}^{2}$
$\mathrm{m}_{1} \mathrm{~g}=\mathrm{GM} \mathrm{m} \mathrm{m}_{1} / \mathrm{r}_{1}{ }^{2}$ ，here $\mathrm{r}=\mathrm{r}_{1}$ only．

Here，

$$
\begin{aligned}
r & =\left(\mathrm{R}+\mathrm{r}_{1}\right)=\left(6.4 \times 10^{6}+3 \times 10^{8}\right) \\
& =3.07 \times 10^{8} \mathrm{~m}
\end{aligned}
$$

where， $\mathrm{R}=$ Radius of Earth
$r_{1}=$ Distance of the satellite from the surface of the earth

So，$g=\mathrm{GM} / \mathrm{r}_{1}{ }^{2}=\left(6.67 \times 10^{-11} \mathrm{X} 5.97 \times 10^{24}\right) /\left(3 \times 10^{8}\right)^{2}$
$g=4.4 \times 10^{-3} \mathrm{~m} / \mathrm{s}^{2}$

