Department of Physics
National Dong Hwa University，1，Sec．2，

General Physics I，Quiz 2
PHYS1000AA，Class year 103／2014
2014－10－28

Da Hsueh Rd．，Shou－Feng，Hualien，97401，Taiwan

Quiz－2 Solution

1．Solution ：

a）Since the displacement of you is zero，so the work done will be zero in principally．
b）We know the potential energy $\mathrm{V}=\mathrm{mgh}=2 \mathrm{~kg} \mathrm{X} 9.8 \mathrm{~m} / \mathrm{s}^{2} \mathrm{X} 3 \mathrm{~m}$

$$
=58.8 \mathrm{~J}
$$

c）The kinetic energy $\mathrm{K}=1 / 2 \mathrm{mv}^{2}=1 / 2\left[2 \mathrm{~kg} \mathrm{X}(1 \mathrm{~m} / \mathrm{s})^{2}\right]=1 \mathrm{~J}$
d）Since it has uniform velocity（Every second it cross the same distance， here $1 \mathrm{~m} / \mathrm{s}$ ）so after 3 s the book will touch the ground．The kinetic energy will be transformed to sound，potential and other energy．

2．Solution：

a）The initial compression of the spring ： $1 / 2 \mathrm{kx}^{2}=1 / 2 \mathrm{mv}^{2}$

$$
\begin{aligned}
& \text { Or, } 1 / 2(500 \mathrm{~N} / \mathrm{m})\left(\Delta \mathrm{x}^{2}\right)=1 / 2(1 \mathrm{~kg})(12 \mathrm{~m} / \mathrm{s})^{2} \\
& \text { So, } \quad \Delta \mathrm{x}=0.536 \mathrm{~m}
\end{aligned}
$$

b）Speed of the block at the top of track ：
Total energy，$\Delta \mathrm{E}=-\mathrm{F} \Delta \mathrm{x}$
$\left(\mathrm{mgh}_{\mathrm{T}}+1 / 2 \mathrm{mv}_{\mathrm{T}}^{2}\right)-\left(\mathrm{mgh}_{\mathrm{B}}+1 / 2 \mathrm{mv}_{\mathrm{B}}^{2}\right)=-\mathrm{F}(\Omega \mathrm{R})$
$\left(1 \mathrm{~kg}\right.$ X $\left.9.8 \mathrm{~m} / \mathrm{s}^{2} \mathrm{X} 10 \mathrm{~m}+1 / 21 \mathrm{~kg} \mathrm{X} \mathrm{v}_{\mathrm{T}}{ }^{2}\right)-[(1 \mathrm{~kg} X 9.8 \mathrm{~m} / \mathrm{s} \mathrm{X} 0)+1 / 2(1 \mathrm{~kg}$ $\left.\mathrm{X} 12 \mathrm{~m} / \mathrm{s})^{2}\right]=-(7 \mathrm{~N})(\boldsymbol{\mathrm { X }} 5 \mathrm{~m})$
So， $\mathrm{v}_{\mathrm{T}}=16.48 \mathrm{~m} / \mathrm{s}$［Neglect the－negative sign，it just mean the direction）

3．Solution：

a）Since the cars make angle with original line of motion（ Let X －axis）after collision so by using conservation of momentum we can write for the motion in X －direction is
$M V_{1 i x}+M V_{2 i x}=M V_{1 f x}+M V_{2 f x}$
$80 \mathrm{~km} / \mathrm{hr}+0=40 \mathrm{~km} / \mathrm{hr} \cos 45^{\circ}+\mathrm{V}_{2 \mathrm{fx}} \quad$［since both cars have same mass］
$\mathrm{V}_{2 \mathrm{fx}}=51.7 \mathrm{~km} / \mathrm{hr}$
Now for motion in Y －axis direction
$M V_{\text {1iy }}+M V_{2 \text { iy }}=M V_{\text {1fy }}+M V_{2 \text { fy }}$
$0+0=40 \mathrm{~km} / \mathrm{hr} \sin 45^{\circ}+\mathrm{V}_{2 \text { fy }}$
$\mathrm{V}_{2 \mathrm{fy}}=-28.2 \mathrm{~km} / \mathrm{hr}$
Resultant $\mathrm{V}_{2 \mathrm{f}}=\mathrm{V}(\mathrm{V} 2 \mathrm{fx})^{2}+\left(\mathrm{V}_{2 \mathrm{fy}}\right)^{2}=58.9 \mathrm{~km} / \mathrm{hr}$ at 45° direction
b）Yes，it is possible．

