\qquad Name：

Midterm Solution

Chapter 01－11，Serway；ABSOLUTELY NO CHEATING！
Please write the answers on the blank space or on the back of this paper to save resources．
1.
（a）$\sum F_{y}=T-f-M g=0$ forth elevator to lifT

$$
\begin{aligned}
& \therefore T=\text { lift of th elevator }=M_{g}+f \\
& M=T 0 \text { al mass } \\
& P=P \text { over }=T \cdot V=(M g+f) \cdot V \\
& =\left[(1800 \mathrm{~kg})\left(9.8 \mathrm{~mm} / \mathrm{s}^{2}\right)+4000 \mathrm{~N}\right] \cdot 3.00 \mathrm{~N} / \mathrm{s}=6.49 \times 10^{4} \mathrm{~W}
\end{aligned}
$$

（b）$\sum F_{y} \approx T-f-M g=M_{a}$

$$
T=M(a+q)+f
$$

$$
P=T V=[M(a+g)+f] V
$$

$$
=\left[1800 \mathrm{~kg}\left(1.00 \mathrm{\pi} / \mathrm{s}^{2}+9.5 \mathrm{~m} / \mathrm{s}^{2}\right)+4000 \mathrm{~N}\right] \mathrm{V}
$$

$$
=2.34 \times 10^{4} \mathrm{v}
$$

（c）$r=3 \mathrm{~m} / \mathrm{s}$ them $p=2.34 \times 10^{4} .3=7.02 \times 10^{4} \mathrm{~W}$
（d）Couparigy（a）and（c）．We found the（c）is longer than（a）， This is because（a）is a Constant（average）speed．
（ C ）is the instant speed．To Start an object，due to its mass（also called moment of inectia），one needs langer force．Therefore lugger power at the same speed．
2.

We start with the particle under a net force model in the x and y directions:

$$
\begin{array}{ll}
\sum F_{x}=m a_{x}: & T \sin \theta=\frac{m v^{2}}{r} \\
\sum F_{y}=m a_{y}: & T \cos \theta=m g
\end{array}
$$

So $\frac{\sin \theta}{\cos \theta}=\frac{v^{2}}{r g}$ and $v=\sqrt{r g \frac{\sin \theta}{\cos \theta}}$

ANS. FIG. P11.16
then

$$
L=r m v \sin 90.0^{\circ}=r m \sqrt{r g \frac{\sin \theta}{\cos \theta}}=\sqrt{m^{2} g r^{3} \frac{\sin \theta}{\cos \theta}}
$$

and since $r=\ell \sin \theta$,

$$
L=\sqrt{m^{2} g \ell^{3} \frac{\sin ^{4} \theta}{\cos \theta}}
$$

3.

$$
\begin{aligned}
L=r \times P=m v r & \omega=\frac{2 \pi}{T} \\
\therefore L & =m r^{2} \omega=m r \\
& =\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(\frac{2 \times 3.14}{1.51 r_{10}}{ }^{-6}\right)\left(r^{2}\right) \\
& =1.06 \times 10^{-44} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{sec}^{2}
\end{aligned}
$$

4.

$$
\begin{array}{rlr}
I & =\int_{b}^{\pi} r^{2} d m \\
& =\int_{0}^{\pi} R^{2} \sin ^{2} \theta \cdot 2 \pi R^{2} \sin \theta d \theta \\
& =2 \pi R^{4} \int_{0}^{\pi} \sin ^{2} \theta \sin \theta d \theta & r R d \theta \\
& =2 \pi R^{4} \int_{-1}^{1}\left(1-\cos ^{2} \theta\right) d(-\cos \theta) & d n=2 \pi r R d \theta \\
& =2 \pi R^{4} \int_{-1}^{+1}\left(1-\cos ^{2} \theta\right) d(\cos \theta) & \\
& =2 \pi R^{4}\left[x-\frac{1}{3} x^{3}\right]^{1} & \\
& =2 \pi R R^{2} \sin \theta R d \theta \\
& =2 \pi R^{4} \cdot \frac{4}{3} \\
& =\frac{8}{3} \pi R^{4}=\frac{2}{3} M R^{2} & M
\end{array}
$$

5.

(a) A triangular sign to be hung from a single string. (b) Geometric construction for locating the center of mass.

Evaluate dm:

$$
d m=\rho y t d x=\left(\frac{M}{\frac{1}{2} a b t}\right) y t d x=\frac{2 M y}{a b} d x
$$

Use Equation 9.32 to find the x coordinate of the

$$
\begin{equation*}
x_{\mathrm{CM}}=\frac{1}{M} \int x d m=\frac{1}{M} \int_{0}^{a} x \frac{2 M y}{a b} d x=\frac{2}{a b} \int_{0}^{a} x y d x \tag{1}
\end{equation*}
$$

center of mass:
To proceed further and evaluate the integral, we must express y in terms of x. The line representing the hypotenuse of the triangle in Figure 9.20b has a slope of b / a and passes through the origin, so the equation of this line is $y=(b / a) x$.

Substitute for y in Equation (1):

$$
\begin{aligned}
x_{\mathrm{CM}} & =\frac{2}{a b} \int_{0}^{a} x\left(\frac{b}{a} x\right) d x=\frac{2}{a^{2}} \int_{0}^{a} x^{2} d x=\frac{2}{a^{2}}\left[\frac{x^{3}}{3}\right]_{0}^{a} \\
& =\frac{2}{3} a
\end{aligned}
$$

