Department of Physics

SN：

\qquad ，Name： \qquad
Chapter 1－8，Serway；ABSOLUTELY NO CHEATING！
Please write the answers on the blank space or on the back of this paper to save resources．

1．We use the graphical representation of the definition of work．W equals the area under the force－displacement curve．This definition is still written $\mathrm{W}=\int F_{x} d x$ but it is computed geometrically by identifying triangles and rectangles on the graph．
（a）For the region $0 \leq x \leq 5.00 \mathrm{~m}$ ，

$$
\mathrm{W}=\frac{(3.00 \mathrm{~N})(5.00 \mathrm{~m})}{2}=7.50 \mathrm{~J}
$$

（b）For the region $5.00 \leq x \leq 10.0, \quad W=(3.00 \mathrm{~N})(5.00 \mathrm{~m})=15.0 \mathrm{~J}$
（c）For the region $10.00 \leq x \leq 15.0, \quad W=\frac{(3.00 \mathrm{~N})(5.00 \mathrm{~m})}{2}=7.50 \mathrm{~J}$
（d）For the region $0 \leq x \leq 15.0, \quad W=(7.50+7.50+15.0) \mathrm{J}=30.0 \mathrm{~J}$

ANS．FIG． 1
2.

$$
\begin{aligned}
& \sum F_{y}=m a_{y}: n-392 \mathrm{~N}=0 \\
& n=392 \mathrm{~N} \\
& f_{k}=\mu_{k} n=(0.300)(392 \mathrm{~N})=118 \mathrm{~N}
\end{aligned}
$$

ANS. FIG. 2
(a) The applied force and the motion are both horizontal.

$$
\begin{aligned}
W_{F} & =F d \cos \theta \\
& =(130 \mathrm{~N})(5.00 \mathrm{~m}) \cos 0^{\circ} \\
& =650 \mathrm{~J}
\end{aligned}
$$

(b) $\Delta E_{\text {int }}=f_{k} d=(118 \mathrm{~N})(5.00 \mathrm{~m})=588 \mathrm{~J}$

Since the normal force is perpendicular to the motion,

$$
W_{n}=n d \cos \theta=(392 \mathrm{~N})(5.00 \mathrm{~m}) \cos 90^{\circ}=0
$$

The gravitational force is also perpendicular to the motion, so

$$
W_{g}=m g d \cos \theta=(392 \mathrm{~N})(5.00 \mathrm{~m}) \cos \left(-90^{\circ}\right)=0
$$

We write the energy version of the nonisolated system model as

$$
\begin{gathered}
\Delta K=K_{f}-K_{i}=\sum W_{\text {other }}-\Delta E_{\text {int }} \\
\frac{1}{2} m v_{f}^{2}-0=650 \mathrm{~J}-588 \mathrm{~J}+0+=62.0 \mathrm{~J} \\
\text { (c) } \quad v_{f}=\sqrt{\frac{2 K_{f}}{m}}=\sqrt{\frac{2(62.0 \mathrm{~J})}{40.0 \mathrm{~kg}}}=1.76 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

