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1. Starting Up

R must be installed on your system! If it is not, follow the installation instructions appropriate to the operating
system. Installation is now especialy straightforward for Windows users. Copy down the latest SetupR.exe
from the relevant base directory on the nearest CRAN site, click onitsicon to start installation, and follow
instructions. Librariesthat do not come with the base distribution must be downloaded and installed separately.

It pays to have a separate workspace directory for each major project. For more details. see the README file
that isincluded with the R distribution. Users of Microsoft Windows may wish to create a separate icon for each

such workspace. First create the directory that will be used for the new workspace. Then right cIick|c0p)E|to
O



The screen snapshot in Fig.2 shows adisplay file window. Thisalowsinput to R of statements from afile that
has been set up in advance. To get adisplay file window, go to the File menu. Then click on Display File. You
will be asked for the name of afile whose contents are then displayed in the window. In Fig. 2 the file was
rcommands.txt.

Highlight the commands that are intended for input to R. Click on the "Paste to consol€e’ icon, on the far left of
the display file toolbar in Figs. 2 and 3, to send these commandsto R.
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Fig. 2. Thefocusison an R display file window, with the console window in the background.



Linix/Unix than under Windows. Under Microsoft Windows, an attractive option is to use a utility that is
designed for use with the shareware WinEdt editortd

1.2 Using the Console (or Command Line) Window

Fig. 1 showed the console window when it was first opened.

The command line prompt, i.e. the >, isan invitation to start typing in your commands. For example, typein
2+2 and pressthe Enter key. Hereiswhat | get on my screen:

> 242

[1] 4

>

Heretheresultis4. The[1] says, alittle strangely, “first requested element will follow”. Here, thereisjust one
element. The> indicatesthat R is ready for another command.

The exit or quit command is

> a0

Alternatives are to click on the File menu and then on Exit, or to click on the X in the top right hand corner of
the R window. There will be a message asking whether to save the workspace image. Clicking Y es (the safe
option) will save all the objects that remain in the workspace — any that were there at the start of the session and
any that have been added since.

1.3 A Short R Session

We will read into R afile that holds the population figures for Australian states and territories, and the total



We will now do aplot of the ACT population between 1917 and 1997. We will first of al remind ourselves of



space are sep="","" and sep=""\t"". Thislast choice makes tabs separators. Similarly, users can control over
the choice of missing value character or characters, which by default is NA. If the missing value character isa
period (*."), specify na.strings="_"".

R has severa variants of read. table() that differ only in having different default parameter settings. Note
in particular read . csv(), which has settings that are suitable for comma delimited (csv) files that have been
generated from Excel spreadsheets.

If read.table()



16 Exercise

1. Inthe dataframe elasticband from section 1.3.1, plot distance against stretch.

2. The following ten observations, taken during the years 1970-79, are on October snow cover for Eurasia.
(Snow cover isin millions of square kilometers):

year
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

SNOwW. cover
6.5
12.0
14.9
10.0
10. 7
7.9
21.9
12.5
14.5
9.2

i. Enter the datainto R. [Section 1.3.1 showed one way to do this. To save keystrokes, enter the successive
yearsas 1970:1979]

ii. Plot show.cover versusyear.

iii Use the hist() command to plot a histogram of the snow cover values.

iv. Repeat ii and iii after taking logarithms of snow cover.

3. Input the following data, on damage that had occurred in space shuttle launches prior to the disastrous launch

of Jan 28 1986.

These are the data, for 6 launches out of 24, that were included in the pre-launch charts that

were used in deciding whether to proceed with the launch. (Datafor the 23 launches where information is
avalable isin the data set orings that accompanies these notes.)

Temperature Erosion Blowby Total



2. An Overview of R

2.1 TheUsesof R



2.1.3 R has extensive graphical abilities

The majn R graphics function|is pl@pt().|In addition to plot() there are functions for adding points and lines
ecified positions, for specifying tick marks and tick labels, for labelling

ary for the

ES,
:’:{@re e varjous other alternative kel pful [forms of graphical summary. A helpful graphical su
h{i 1 ls dataframe isthe scatterplof|matrix, shownin Fig. 5. For this, type:

1000 4000 7000
I |







2.3 R Objects

All R entities, including functions and data structures, exist as objects. They can all be operated on as data
Typein Is() to see the names of al objectsin your workspace. An alternative to Isq;]s objects(Q). |

both cases there is provision to specify a particular pattern, e.g. starting with the letter "p
Typing the name of an object causes the printing of its contents. Try typingq, mean, etc.

Important: On quitting, R offers the option of saving the workspace image. This allows the retention, for usein
the next session in the same workspace, any objects that were created in the current session. Careful
housekeeping may be needed to distinguish between objects that are to be kept and objects that will not be used
again. Beforetyping q() to quit, use rm() to remove objects that are no longer required. Saving the

O
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Thereisamuch easier (and better) way to do this calcul ation:
> sum(c(31,51,91))
[1] 173

Skilled R users have limited recourse to loops. There are often, asin the example above, better alternatives.

2.5 R Functions

We give two simple examples of R functions.

2.5.1 An Approximate Miles to Kilometers Conversion
miles.to.km <- function(miles)miles*8/5

Thereturn value isthe value of the final (and in thisinstance only) expression that appears in the function
bod)E.l Use the function thus

> miles.to.km(175) # Approximate distance to Sydney, in miles

[1] 280

The function will do the conversion for severa distances all at once. To convert a vector of the three distances
100, 200 and 300 miles to distances in kilometers, specify:

> miles.to.km(c(100,200,300))
[1] 160 320 480

2.5.2 A Plotting function

The data set Florida has the votes in the 2000 election for the various US Presidential candidates, county by
county in the state of Florida. The following plots the vote for Buchanan against the vote for Bush.

attach(florida)
plot(BUSH, BUCHANAN, xlab="Bush”, ylab="Buchanan’)
detach(florida) # In S-PLUS, specify detach(*“florida™)

Here isafunction that makes it possible to plot the figures for any pair of candidates.
plot.florida <- function(xvar="BUSH”, yvar="BUCHANAN""){
x <- florida[,xvar]
y<- Florida[,yvar]
plot(x, y, xlab=xvar,ylab=yvar)
m0.0267 TD-0.TD-
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The concatenate function c() may also be used to join lists.

2.6.2 Subsets of Vectors

There are two common ways to extract subsets of vectorsE.|

1. Specify the numbers of the elements that are to be extracted, e.g.
> x <- ¢(3,11,8,15,12) # Assign to x the values 3, 11, 8, 15, 12
> x[c(2,4)] # Extract elements (rows) 2 and 4
[1] 11 15

One can use negative numbers to omit elements:

> x <- ¢(3,11,8,15,12)

> x[-c(2,3)]

[1] 3 15 12
2. Specify avector of logical values. The elements that are extracted are those for which the logical valueisT.
Thus suppose we want to extract values of x that are greater than 10.

> x>10 # This generates a vector of logical (T or F)

15



gender <- c(rep(“female”,691), rep(“male”,692))

(The usage isthat rep(“femalle”, 691) creates 691 copies of the character string “female”, and similarly
for the creation of 692 copies of “male’.)
We can change the vector to afactor, by entering:
gender <- factor(gender)
Internally the factor gender is stored as 691 1's, followed by 692 2's. It has stored with it a table that looks

like this:
1 | femae

2 | mae

Once stored as a factor, the space required for storage is reduced.

Whenever the context seems to demand a character string, the 1 istrandated into “female” and the 2 into “male”.
The values “female” and “male” are the levels of the factor. By default, the levels are in alphanumeric order, so
that “female” precedes “male’. Hence:

> levels(gender) # Assumes gender is a factor, created as above

[1] "female™ "male"
The order of the levelsin afactor determines the order in which the levels appear in graphs that use this
information, and in tables. To cause “male” to come before “female”, use

gender <- relevel(gender, ref=*male™)

An alternative is

gender <- factor(gender, levels=c(“male”, “female’))
Thislast syntax is available both when the factor isfirst created, or later when one wishes to change the order of
levelsin an existing factor. Incorrect spelling of the level names will generate an error message. Try

gender <- factor(c(rep(“female”,691), rep(“male”,692)))

table(gender)

gender <- factor(gender, levels=c(“male”, “female’))

table(gender)

gender <- factor(gender, levels=c(“Male”, “female’))

# Erroneous

16



of passengersfor carsin this category), Max .passengers, No.of.cars., and abbrev. Thefirst three
columns have mode numeric, and the fourth has mode character. Columns can be vectors of any mode. The
column abbrev could equally well be stored as a factor.

Any of the followi ngL:‘_T/IviII pick out the fourth column of the data frame Cars93. summary, then storing it in
the vector type.

type <- Cars93.summary$abbrev
type <- Cars93.summaryl[,4]

type <- Cars93.summary[,”abbrev’]
type <- Cars93.summary[[4]]

17



2.8 Common Useful Functions
printQ # Prints a single R object

cat(Q) # Prints multiple objects, one after the other

length() # Number of elements in a vector or of a list

mean()

median()

rangeQ

unique() # Gives the vector of distinct values

diffQ # Replace a vector by the vector of first differences
# N. B. diff(xX) has one less element than x

sort(Q) # Sort elements into order, but omitting NAs

order( # x[order(x)] orders elements of x, with NAs last

cumsum(Q)

cumprod()

revQ # reverse the order of vector elements

Thefunctions mean(), median(), range(), andanumber of other functions, take the argument

na.rm=T; i.e.remove NAs, then proceed with the calculation.

By default, sort() omitsany NAs. The function order () places NAslast. Hence:
> x <- c(1, 20, 2, NA, 22)
> order(x)
[1]13254
> x[order(x)]
[1] 1 220 22 NA
> sort(x)
[1] 1 22022

1 8 Ak Parpe

doesthis. Itt gi Léﬁ“lljment the name ?f the data frame, and the function that is to
pp

bR PRIDG A TARRELQL né’tﬁ

The fsmpply O &
> sapply(rainforest, is.factor)
dbh wood bark root rootsk branch species
FALSE FALSE FALSE FALSE FALSE FALSE TRUE
> sapply(rainforest[,-7], range) # The Ffinal column (7) is a factor
dbh wood bark root rootsk branch
[1,L] 4 NA NA NA NA NA
[2,] 56 NA NA NA NA NA

The functions mean and range, and several of the other functions noted above, have parametersna. rm. For
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[1] "-GlobalEnv"

"Autoloads"

"package:base"
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3. Plotting
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3.2 Fine control — Parameter settings

The default settings of parameters, such as character size, are often adequate. When it is necessary to change
parameter settings for a subsequent plot, the par () function does this. For example,

par(cex=1.25, mex=1.25) # character (cex) & margin (mex) expansion

increases the text and plot symbol size 25% above the default. The addition of mex=1 .25 makes room in the
margin to accommodate the increased text size.

On the first use of par () to make changes to the current device, it is often useful to store existing settings, so
that they can be restored later. For this, specify

oldpar <- par(cex=1.25, mex=1.25)
This oldpar, then changes parameters (here cex and stesdsas requested. To
restore the original parameter settings at some later time, enter par{oldpar). Hereisan example:

attach(elasticband)

oldpar <- par(cex=1.5, mex=1.5)

plot(distance ~ stretch)

par(oldpar) # Restores the earlier settings

detach(elasticband)

Inside a function specify, e.g.
oldpar <- par(cex=1.25, mex=1.25)
on.exit(par(oldpar))

Typein help(par) to get details of al the parameter settings that are available with par ().

3.2.1 Multiple plots on the one page

The parameter mFrow can be used to configure the graphics sheet so that subsequent plots appear row by row,
one after the other in arectangular layout, on the one page. For a column by column layout, use mFcol
instead. In the example below we present four different transformations of the primates data, in atwo by two
layout:

par(mfrow=c(2,2), pch=16)

data(Animals) # Needed if Animals (MASS library) is not already loaded
attach(Animals)

plot(body, brain)

plot(sgrt(body), sqrt(brain))

plot((body)”™0.1, (brain)”0.1)

plot(log(body), log(brain))

detach(Animals)

par(mfrow=c(1,1), pch=1) # Restore to 1 figure per page

3.2.2 The shape of the graph sheet

Often it is desirable to exercise contrl Oover the shape of the graph page, e.g. so that the individual plots are
rectangular rather than square. The R for Windows functionswin.graph() or x11() that set up the
Windows screen take the parameterswidth (in inches), height (in inches) and pointsize (in 1/72 of an
inch). The setting of pointsize (default =12) determines character heights. It isthe relative sizes of these
parameters that matter for screen display or for incorporation into Word and similar programs. Graphs can be
enlarged orjOrunk by pointing at one corner, holding down the left mouse button, and pulling.

22



3.3 Adding points, lines and text

Hereisasimple example that shows how to use the function text() to add text labelsto the points on a plot.

> primates
Bodywt Brainwt
Potar monkey 10.0 115
Gorilla 207.0 406
Human 62.0 1320
Rhesus monkey 6.8 179
Chimp 52.2 440

Observe that the row names store labels for each rov\’E.I
> attach(primates) # Needed if primates is not already attached.
> plot(Bodywt, Brainwt, xlim=c(5, 250))
> # Specify xlim so that there is room for the labels
> text(x=Bodywt, y=Brainwt, labels=row.names(primates), adj=0)
# adj=0 implies left adjusted text
> detach(primates)

Fig. 7 shows the resullt.

Human
s 8
£ 97
©
m —
&
w0
L 8
T Q7
= chi
s . Imp Gorilla]
S h ki
- Rhesus monke
o Otar monkey”

| | | | | |
0 50 100 150 200 250

primates$Bodywt

Figure7: Plot of the primate data, with labels on points

Fig. 7 would be adequate for identifying points, but is not a presentation quality graph. We now show how to
improveit.

20 Row names can be created in several different ways. They can be assigned directly, e.g.
row.names(primates) <- c("Potar monkey","Gorilla",""Human", " Rhesus monkey",'Chimp')

When using read . table() to input data, the parameter row. names is available to specify, by number or
name, a column that holds the row names.
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In Fig. 8 we use the xlab (x-axis) and ylab

24



points(1:7,rep(2,7), pch=(0:6)+7) # Plot symbols 7 to 13
text((1:7)+0.25, rep(2,7), paste((0:6)+7)) # Label with symbol number
points(1:7,rep(1,7), pch=(0:6)+14) # Plot symbols 14 to 20
text((1:7)+0.25, rep(1,7), paste((0:6)+14)) # Labels with symbol number

Hereisthe plot:

DOA+ N
123

N ®7 %8 99 el0 W1 ®\|2 =3

— B4 mM5 el5 417 18 €19 °20

Figure9: Different plot symboals, coloursand sizes

A variety of color palettes are available. lereisafunction that displays some of the possibilities:
view.colours <- function(Q{
plot(1, 1, xlim=c(0,14), ylim=c(0,3), type="n", axes=F, xlab="",ylab=""")
text(1:6, rep(2.5,6), paste(1:6), col=palette(Q[1:6], cex=2.5)
text(10, 2.5, "Default palette", adj=0)
rainchars <- c("'R","0","Y","G","B","1","V"")
text(1:7, rep(1.5,7), rainchars, col=rainbow(7), cex=2.5)
text(10, 1.5, "rainbow(7)", adj=0)
cmtxt <- substring(‘‘cm.colors™, 1:9,1:9)
# Split “cm.colors” into its 9 characters
text(1:9, rep(0.5,9), cmtxt, col=cm.colors(9), cex=3)
text(10, 0.5, "cm.colors(9)", adj=0)
}

To run the function, enter
view.coloursQ)

3.3.2 Adding Text in the Margin

mtext(side, line, text, ..) addstextinthemargin of the current plot. The sidesare numbered
1(x-axis), 2(y-axis), 3(top) and 4.

3.4 I dentification and L ocation on the Figure Region

25



1"* locator() prints out the co-ordinates of points. One positions the cursor at the location for which
coordinates are required, and clicks the left mouse button.

A click with the right mouse button signifies that the identification or location task is complete, unless the setting
of the parameter n is reached first. For identify()

26



Figure 10: Thetwo graphs show the same data, but with a different choice of breakpoints.

Here is the code used to plot the histograms:

par(mfrow = c(1, 2))

attach(possum)

here <- sex == "f"

hist(totingth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),
xlab="Total length'", main ="A: Breaks at 72.5, 77.5, ...")

hist(totingth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),
xlab="Total length'", main="B: Breaks at 75, 80, ...'")

par(mfrow=c(1,1))

detach(possum)

3.5.2 Density Plots

Density plots, now that they are available, are often a preferred aternative to a histogram. In Fig. 11 the
histograms from Figure 10 are overlaid with a density plot.
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lines(dens)
detach(possum)

3.5.3 Boxplots

We now make a boxplot of the above data:
attach(possum)d

od

28
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3.6.2 Adding lines to plots

Usethe function abline()T4.8193ine()-1.1ts

30



data(islands) # 1Ff not already loaded

dotplot(islands) # vector of named numeric values
Unfortunately there are many names, and there is substantial overlap. The following is better, but shrinks the
sizes of the points so that they almost disappear:

dotplot(islands, cex=0.2)

3.7 Plotting Mathematical Symbols

Both text() and mtext() will take an expression rather than atext string. In plot(), either or both of
xlab and ylab can be an expression. Fig. 15 was produced with

plot(x, y, xlab=""Radius”, ylab=expression(Area == pi*r~2))

8000
|

6000
|

mir

4000
|

Area

2000

0
l

| I I I I I

0 10 20 30 40 50

Radius

Figure 15: They-axislabel isa mathematical expression.

Notice that in expression(Area == pi*r~2), thereisadouble equals sign (“==""), although what will
appear on the plot is Area = pi*r"2, with asingle equals sign. Thereason for thisisthat Area == pi*r~2is
avalid mathematical expression, while Area = pi*r~2isnot.

See help(plotmath) for detailed information on the plotting of mathematical expressions. Thereis afurther
example in chapter 12.

Thefinal plot from
demo(graphics)

shows some of the possihilities for plotting mathematical symbols.

3.8 Guidelinesfor Graphs

Design graphs to make their point tersely and clearly, with a minimum waste of ink. Label as necessary to
identify important features. In scatterplots the graph should attract the eye’s attention to the points that are
plotted, and to important grouping in the data. Use solid points, large enough to stand out relative to other
features, when thereis little or no overlap.

When there is extensive overlap of plotting symbols, use open plotting symbols. Where points are dense,
overlapping points will give ahigh ink density, which is exactly what one wants.
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Use graphs from which information can be read directly and easily in preference to those that rely on visual
impression and perspective. Thusin scientific papers contour plots are much preferable to surface plots or two-
dimensional bar graphs.

Draw graphs so that reduction and reproduction will not interfere with visual clarity.

Explain clearly how error bars should be interpreted — + SE limits, £ 95% confidence interval, + SD limits, or
whatever. Explain what source of “error(s)’ is represented. It is pointlessto present information on a source of
error that is of little or no interest, for example analytical error when the relevant source of “error’ for
comparison of treatments is between fruit.

Use colour or different plotting symbolsto distinguish different groups. Take care to use colours that contrast.

Thelist of references at the end of this chapter has further comments on graphical and other presentation issues.
3.9 Exercises
1. Plot the graph of brain weight (brain) versus body weight (body) for the data set Animals from the

MASS library. Label the axes appropriately.
[To accessthis data frame, specify library(mass); data(Animals)]

2. Repeat the plot 1, but this time plotting log(brain weight) versus log(body weight). Use the row labelsto label

32



6. Try X <- rnorm(10). Print out the numbersthat you get. Look up the help for rnorm. Now generate a
sample of size 10 from anormal distribution with mean 170 and standard deviation 4.

7. Use mFrow() to set up the layout for a 3 by 4 array of plots. Inthetop 4 rows, show normal probability
plots (section 3.4.2) for four separate “random’ samples of size 10, al from anormal distribution. Inthe middle
4 rows, display plots for samples of size 100. In the bottom four rows, display plots for samples of size 100e 10
Comment on how the appearance of the plots changes as the sampl e size changes.

8. The function runi () can be used to generate a sample from a uniform distribution, by default on the
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4. Lattice graphics, and coplot()

Lattice plots allow the use of the layout on the page to reflect meaningful aspects of data structure. They offer
abilities similar to those in the S-PLUS trellis libraryO

At the time of writing the implementation of the lattice library was incomplete, though already with impressive
functionality. Thelattice library sits on top of the grid library. To use lattice graphics, both these libraries must
beinstalled. Providingitisinstalled, the grid library will be loaded automatically when lattice is loaded.

The older coplot() function that isin the base library has some of same abilities as xyplot( ), but witha
limitation to two conditioning factors or variables only.

4.1 Examplesthat Present Panels of Scatterplots—Using xypl ot ()

The basic function for drawing panels of scatterplotsis xyplot(). Wewill use the data frame tinting
(supplied) to demonstrate the use of xyplot(). Th@&tﬁﬁa are from an experiment that investigated the

effects of tinting of car windows on visual performance
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xyplot(csoa ~ it | sex * agegp, data=tinting) # Simple use of xyplot(Q)

Here is the statement used to get Fig. 16. The two different symbols distinguish between low contrast and high
contrast targets.
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In each instance, one can add conditioning variables.

4.2 Using copl ot ()
The lattice library makes coplot() largely redundant. It may still be useful if the lattice library is not
available, or if one wantsits particular layout and labelling.

We again use data from the data frame tinting
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5. Linear (Multiple Regression) Models and Analysis of Variance

5.1 TheModel Formulain Straight Line Regression

We begin with the straight line regression example that appeared earlier, in section 2.1.4. First we plot the data:
plot(distance ~ stretch, data=elasticband)

The code for the regression calculation is:
elastic.Im <- Im(distance ~ stretch, data=elasticband)

Heredistance ~ stretchisamode formula. Other model formulae will appear in the course of this
chapter. Fig. 18 shows the plot:
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Residual standard error: 16.3 on 5 degrees of freedom
Multiple R-Squared: 0.635, Adjusted R-squared: 0.562
F-statistic: 8.71 on 1 and 5 degrees of freedom, p-value: 0.0319

5.2 Regression Objects
An Im object isalist of named elements. Above, we created the object elastic. Im. Here are the names of
its elements:

> names(elastic.Im)

[1] "coefficients" ‘''residuals” "effects" "rank"
[5] "fitted.values™ "assign™ "gr" "df.residual™
[9] "xlevels" "call" "terms" "model"’

Various functions are available for extracting information that you might want from the list. Thisis better than
manipulating the list directly. Examples are:

> coef(elastic.Im)

(Intercept) stretch
-63.571 4.554
> resid(elastic.lIm)
1 2 3 4 5 6 7

2.1071 -0.3214 18.0000 1.8929 -27.7857 13.3214 -7.2143

The function most often used to inspect regression output is summary ()
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par(mfrow = c(2, 2))
plot(elastic.Im)
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The following are the fitted values and residual s that we get with the estimates of a (= -63.6) and b ( = 4.55) that
result from least squares regression:

X v y y-9
Stretch (mm) (Fitted) (Observed) (Residual)
x 63.6 X455 1x-636+455x Stretch ' | Distance (mm)| | Observed -
_________________________ ! Fitted
1 46 63.6 + 4.55 x 46 = 145.7 148 148-145.7 = 2.3
1 54 63.6+ 4.55 x 54 = 182.1 182 182-182.1=-0.1
1 48 63.6 + 4.55 x 48 = 154.8 173 173-154.8 =
182
1 50 63.6 + 4.55 x 50 = 163.9 166 166-163.9= 2.1
1 44 63.6 + 4.55 x 44 = 136.6 109 109-136.6 = -
276
1 42 63.6+ 455 x 42 = 1275 141 141-127.5=
135
1 52 63.6 + 4.55 x 52 = 173.0 166 166-173.0 = -7.0

Note that we use )7 [pronounced y-hat] as the symbol for predicted values.

We might alternatively fit the simpler (no intercept) model. For this we have
y=xxb+e

where eis arandom variable with mean 0. The X matrix then consists of asingle column, the x’s.

5.3.1 Model Formulae in General
Model formulae take aform such as:

y~x+z :Im, gim,, etc.

y~x + fac + Fac:x :Im,glm, aov, etc. (If Facisafactor and x isavariable, fac:x alowsa
different slope for each different level of fac.)

Model formulaeare widely used to set up most of the model calculationsin R.

Notice the similarity between model formulaeand the formulaethat are used for specifying coplots. Thus, recall
that the graph formula for a coplot that gives aplot of y against x for each different combination of levels of
Facl (across the page) and Fac2 (up the page) is:

y ~ x | facl+fac2

*5.3.2 Manipulating Model Formulae

Model formulae can be assigned, e.g.
formyxz <- formula(y~x+z)

or
formyxz <- formula(“y~x+z’")

The argument to Formula()
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> formds <- formula(paste(nam[1],"~",nam[2]))
> Im(formds, data=elasticband)

Call:
Im(formula = formds, data = elasticbang)

Coefficients:
(Intercept) distance
26.3780 0.1395

Note that graphics formulae can be manipulated in exadtly th

5.4 Multiple Linear Regression M odél

5.4.1 The data frame Rubber

The data set Rubber from the MASSlibrary isfro

loss (the abrasion lossin gm/hr), hard (hardn

We obtain a scatterplot matrix (Fig. 20) thus:
library(mass) # if needed
data(Rubber) # if needed
pairs(Rubber)
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Rubber.Im <- Im(loss~hard+tens, data=Rubber)
> options(digits=3)
> summary(Rubber_1Im)



> summary(logbooks. Im2)$coef
Estimate Std. Error t value Pr(c|t])

(Intercept) -1.263 3.552 -0.356 0.7303
thick 0.313 0.472 0.662 0.5243
height 2.114 0.678 3.117 0.0124

> logbooks. Im3<-Im(weight~thick+height+width,data=1ogbooks)
> summary(logbooks. Im3)$coef
Estimate Std. Error t value Pr(c|t])

(Intercept) -0.719 3.216 -0.224 0.829
thick 0.465 0.434 1.070 0.316
height 0.154 1.273 0.121 0.907
width 1.877 1.070 1.755 0.117

Soisweight proportional to thick * height * width?

The correlations between thick, height and width are so strong that if one tries to use more than one of
them as a explanatory variables, the coefficients are ill-determined. They contain very similar information, asis
evident from the scatterplot matrix. The regressions on height and width give plausible results, while the
coefficient of the regression on thick is entirely an artefact of the way that the books were selected.

The design of the data collection really isimportant for the interpretation of coefficients from aregression

c
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19.0 20.0 21.0

18.0
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4 1 125 15625

5 1 150 22500
attr(,"assign')
[1J 012

This example demonstrates a way to extend linear models to handle specific types of non-linear relationships.

We can use any transformation we wish to form columns of the model matrix. We could, if we wished, add an
3

x° column.

Once the model matrix has been formed, we are limited to taking linear combinations of columns.

5.5.2 What order of polynomial?

A polynomial of degree 2, i.e. aquadratic curve, looked about right for the above data. How does one check?

One way isto fit polynomials, e.g. of each of degrees 1 and 2, and compare them thus:
> seedrates. Iml<-Im(grain~rate,data=seedrates)
> seedrates. Im2<-Im(grain~rate+l(rate”2),data=seedrates)
> anova(seedrates. Im2,seedrates. Iml)
Analysis of Variance Table

Model 1: grain ~ rate + I(rate”2)
Model 2: grain ~ rate
Res.Df Res.Sum Sq DF Sum Sq F value Pr(cF)
1 2 0.026286
2 3 0.187000 -1 -0.160714 12.228 0.07294

The F-valueislarge, but on this evidence there are too few degrees of freedom to make a totally convincing case
for preferring a quadratic to aline. However the paper from which these data come gives an independent
estimate of the error mean square (0.17 on 35 d.f.) based on 8 replicate results that were averaged to give each
value for number of grains per head. If we compare the change in the sum of squares (0.1607, on 1 df) with a
mean square of 0.17% (35 df), the F-value is now 5.4 on 1 and 35 degrees of freedom, and we have p=0.024 .
Theincrease in the number of degrees of freedom more than compensates for the reduction in the F-statistic.

> # However we have an independent estimate of the error mean

> # square. The estimate is 0.17~2, on 35 df.

> 1-pf(0.16/0.17~2, 1, 35)

[1] 0.0244
Finally note that R* was 0.972 for the straight line model. This may seem good, but given the accuracy of these
data it was not good enough! The statistic is an inadequate guide to whether a model is adequate. Even for any
one context, R? will in general increase as the range of the values of the dependent variable increases. (R%is

larger when there is more variation to be explained.) A predictive model is adequate when the standard errors of
predicted values are acceptably small, not when R? achieves some magic threshold.

5.5.3 Pointwise confidence bounds for the fitted curve
Here is code that will give pointwise 95% confidence bounds. Note that these do not combineto give a
confidence region for the total curve! The construction of such aregion is amuch more complicated task!
plot(grain ~ rate, data = seedrates, pch = 16, xlim = ¢(50, 175), ylim
= ¢(15.5, 22),xlab="Seeding rate",ylab="Grains per head')
new.df <- data.frame(rate = c((4:14) * 12.5))
seedrates.Im2 <- Im(grain ~ rate + I(rate”2), data = seedrates)
pred2 <- predict(seedrates.Im2, newdata = new.df, interval="confidence')
hat2 <- data.frame(fit=pred2[,"fit'"], lower=pred2[,"lwr'],
upper=pred2[,"upr])
attach(new.df)
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lines(rate, hat2$fit)
lines(rate,hat2$lower, Ity=2)
lines(rate, hat2$upper, Ity=2)
detach(new.df)

The extrapolation has deliberately been taken beyond the range of the data, in order to show how the confidence
bounds spread out. Confidence bounds for afitted line spread out more slowly, but are even less believable!

5.5.4 Spline Terms in Linear Models

By now, readers of this document will be used to the idea that it is possible to use linear models to fit terms that
may be highly nonlinear functions of one or more of the variables. The fitting of polynomial functionswas a
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> insulation <-

- feemtto(d(ep(twithmut”, B), rep((wiitii", 7))
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*5.6.2 Other Choices of Contrasts

There are other ways to set up the X matrix. Intechnical jargon, there are other choices of contrasts. One
obvious alternative is to make without thefirst factor level, so that it becomes the baseline. For this, specify:
insulation <- relevel(insulation, baseline="without')
# Make “without”® the baseline
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5.7 Multiple Lines— Different Regression Linesfor Different Species

The terms that appear on the right of the model formula may be variables or factors, or interactions between
variables and factors, or interactions between factors. Here we take advantage of thisto fit different linesto
different subsets of the data.

In the example that follows, we had weights for a porpoise species (Sellena styx) and for a dolphin species
(Delphinus delphis). We take x; to be avariable that has the value O for Delphinus delphis, and 1 for Sellena
styx. We take x, to be body weight. Then possibilities we may want to consider are:

A: Asingleline: y=a+bx,
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> model .matrix(cet. Im2)
(Intercept) factor(species) logweight

1 1 1 3.555
2 1 1 3.738
8 1 0 3.989
16 1 0 3.951
attr(,"assign')

[1J] 012
attr(,"contrasts')
[1] "contr.treatment"

Enter summary(cet. Im2) to get an output summary, and plot(cet. Im2) to plot diagnostic information

for this model.
For model C, the statement is:
> cet.Im3 <- Im(logheart ~ factor(species) + logweight +
Factor(species): logweight, data=dolphins)
Check what the model matrix looks like:
> model .matrix(cet. Im3)

(Intercept) factor(species) logweight factor(species).logweight

1 1 1 3.555
8 1 0 3.989
16 1 0 3.951
attr(,"assign')

[1JO0123

3.555

0.000

0.000

at&r(9coar4aBtstdy) faeeo6(specie8)8(In324.91( )Tj -0.0267 TDOTj-matanova))Tjo.1,
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5.8.1 Plant Growth Example
Here is a simple randomised block design:

> data(PlantGrowth) # From the MASS library

> attach(PlantGrowth)

> boxplot(split(weight,group)) # Looks OK
dataQ
PlantGrowth.aov <- aov(weight~group)
summary(PlantGrowth.aov)

DFf Sum Sq Mean Sq F value Pr(cF)

group 2 3.7663 1.8832 4.8461 0.01591
Residuals 27 10.4921 0.3886
> summary. Im(PlantGrowth.aov)

vV V V

Call:
aov(formula = weight ~ group)

Residuals:
Min 1Q Median 3Q Max
-1.0710 -0.4180 -0.0060 0.2627 1.3690

Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) 5.0320 0.1971 25.527 <2e-16
grouptrtl -0.3710 0.2788 -1.331 0.1944
grouptrt2 0.4940 0.2788 1.772 0.0877

Residual standard error: 0.6234 on 27 degrees of freedom
Multiple R-Squared: 0.2641, Adjusted R-squared: 0.2096
F-statistic: 4.846 on 2 and 27 degrees of freedom, p-value: 0.01591

> help(cabbages)

> data(cabbages) # From the MASS library
> names(cabbages)
[1] "Cult™ ‘"Date" 'HeadWt" "VitC"

> coplot(HeadWt~VitC|]Cult+Date,data=cabbages)

Examination of the plot suggests that cultivars differ greatly in the variability in head weight. Variation in the
vitamin C levels seemsrelatively consistent between cultivars.

> VitC.aov<-aov(VitC~Cult+Date,data=cabbages)
> summary(VitC.aov)

Df Sum Sq Mean Sq F value Pr(cF)
Cult 1 2496.15 2496.15 53.0411 1.179e-09
Date 2 909.30 454.65 9.6609 0.0002486
Residuals 56 2635.40 47.06



*5.8.2 Shading of Kiwifruit Vines

These data (yi%ﬂs in kilograms) are in the data frame kiwi shade that accompanies these notes. They are from an experiment

where there were four treatments - no shading, shading from August to December, shading from
December to February, and shading from February to May. Each treatment appeared once in each of the three
blocks. The northernmost plots were grouped in one block because they were similarly affected by shading from
the sun. For the remaining two blocks shelter effects, in one case from the east and in the other case from the
west, were thought more important. Results are given for each of the four vinesin each plot. 1n experimental
design parlance, the four vines within a plot constitute subplots.

The block:shade mean square (sum of squares divided by degrees of freedom) provides the error term. (If
thisis not specified, one still gets a correct analysis of variance breakdown. But the F-statistics and p-values will
be wrong.)

> kiwishade$shade <- relevel(kiwishade$shade, ref="none')

> ## Make sure that the level “none” (no shade) is used as reference

> kiwishade.aov<-aov(yield~block+shade+Error(block:shade) ,data=kiwishade)
> summary(kiwishade.aov)

Error: block:shade

DFf Sum Sq Mean Sq F value Pr(F)
block 2 172.35 86.17 4.1176 0.074879
shade 3 1394.51 464.84 22.2112 0.001194
Residuals 6 125.57 20.93

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 36 438.58 12.18
> coef(kiwishade.aov)
(Intercept) :
(Intercept)
96.5327

block:shade :
blocknorth blockwest shadeAug2Dec shadeDec2Feb shadeFeb2May
0.993125 -3.430000 3.030833 -10.281667 -7.428333

With