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Introduction 

R implements a dialect of the S language that was developed at AT&T Bell Laboratories by Rick Becker, John 
Chambers and Allan Wilks. Versions of R are available, at no cost, for 32-bit versions of Microsoft Windows for 
Linux, for Unix and for Macintosh systems 8.6 or later. It is available through the Comprehensive R Archive 
Network (CRAN).  Web addresses are given below.   

The citation for John Chambers’ 1998 Association for Computing Machinery Software award stated that S has 
“forever altered how people analyze, visualize and manipulate data.”  The R project enlarges on the ideas and 
insights that generated the S language. 

Here are points relating to the use of R that potential users might consider: 

1. R has extensive and powerful graphics abilities, that are tightly linked with its analytic abilities. 

2. Although there is no official support for R, its informal support network, accessible from the r-help mailing 
list, can be highly effective.  

3. Simple calculations and analyses can be handled straightforwardly, albeit (in the current version) using a 
command line interface.  Chapters 1 and 2 are intended to give the flavour of what is possible without getting 
deeply into the R language.  If simple methods prove inadequate, there can be recourse to the huge range of 
more advanced abilities that R offers.  Adaptation of available abilities allows even greater flexibility.  

4. The R community is widely drawn, from application area specialists as well as statistical specialists. It is a 
community that is sensitive to the potential for misuse of statistical techniques and suspicious of what might 
appear to be mindless use. Expect scepticism of the use of models that are not susceptible to some minimal 
form of data-based validation. 

5. Because R is free, users have no right to expect attention, on the r-help list or elsewhere, to queries.  Be 
grateful for whatever help is given. 

There is no substitute for experience and expert knowledge, even when the statistical analysis task may seem 
straightforward.  Neither R nor any other statistical system will give the statistical expertise that is needed to use 
sophisticated abilities, or to know when naïve methods are not enough.  Experience with the use of R is however, 
more than with most systems, likely to be an educational experience. 

While R is as reliable as any statistical software that is available, and exposed to higher standards of scrutiny 
than most other systems, there are traps that call for special care.  Many of the model fitting routines in R are 
leading edge. There may be a limited tradition of experience of the limitations and potential pitfalls of some of 
the newer abilities. Whatever the statistical system, and especially when there is some element of complication, 
check each step with care.  

Hurrah for the R development team! 

The Use of these Notes 
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1. Starting Up 

R must be installed on your system!  If it is not, follow the installation instructions appropriate to the operating 
system.  Installation is now especially straightforward for Windows users.  Copy down the latest SetupR.exe 
from the relevant base directory on the nearest CRAN site, click on its icon to start installation, and follow 
instructions.  Libraries that do not come with the base distribution must be downloaded and installed separately. 

It pays to have a separate workspace directory for each major project. For more details. see the README file 
that is included with the R distribution.  Users of Microsoft Windows may wish to create a separate icon for each 
such workspace.  First create the directory that will be used for the new workspace.  Then right click|copy1 to 
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The screen snapshot  in Fig.2 shows a display file window.  This allows input to R of statements from a file that 
has been set up in advance.  To get a display file window, go to the File menu.  Then click on Display File.  You 
will be asked for the name of a file whose contents are then displayed in the window.  In Fig. 2 the file was 
rcommands.txt. 

Highlight the commands that are intended for input to R.  Click on the `Paste to console’ icon, on the far left of 
the display file toolbar in Figs. 2 and 3, to send these commands to R.   

 
Fig. 2:  The focus is on an R display file window, with the console window in the background. 
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Linix/Unix than under Windows.  Under Microsoft Windows, an attractive option is to use a utility that is 
designed for use with the shareware WinEdt editor4. 

1.2 Using the Console (or Command Line) Window 
Fig. 1 showed the console window when it was first opened. 

The command line prompt, i.e. the  >>>>, is an invitation to start typing in your commands.  For example, type in 
2+22+22+22+2 and press the Enter key.  Here is what I get on my screen: 

> 2+2> 2+2> 2+2> 2+2    

[1] 4[1] 4[1] 4[1] 4    

>>>>    

Here the result is 4. The[1][1][1][1] says, a little strangely, “first requested element will follow”.  Here, there is just one 
element.  The >>>> indicates that R is ready for another command. 

The exit or quit command is 
> q()> q()> q()> q()    

Alternatives are to click on the File menu and then on Exit, or to click on the ×××× in the top right hand corner of 
the R window.  There will be a message asking whether to save the workspace image.  Clicking Yes (the safe 
option) will save all the objects that remain in the workspace – any that were there at the start of the session and 
any that have been added since. 

1.3  A Short R Session 
We will read into R a file that holds the population figures for Australian states and territories, and the total 
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We will now do a plot of the ACT population between 1917 and 1997.  We will first of all remind ourselves of 
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space are sep=","sep=","sep=","sep="," and sep="sep="sep="sep="\\\\t"t"t"t".  This last choice makes tabs separators.  Similarly, users can control over 
the choice of missing value character or characters, which by default is NANANANA.  If the missing value character is a 
period (“.”), specify na.strings="."na.strings="."na.strings="."na.strings=".". 

R has several variants of read.table()read.table()read.table()read.table() that differ only in having different default parameter settings.  Note 
in particular read.csv()read.csv()read.csv()read.csv(), which has settings that are suitable for comma delimited (csv) files that have been 
generated from Excel spreadsheets. 

If read.table()read.table()read.table()read.table()
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1.6  Exercise 
1.  In the data frame elasticbandelasticbandelasticbandelasticband from section 1.3.1, plot distancedistancedistancedistance against stretchstretchstretchstretch. 

2. The following ten observations, taken during the years 1970-79, are on October snow cover for Eurasia.  
(Snow cover is in millions of square kilometers):        

year snow.cover 
1970 6.5 
1971 12.0  
1972 14.9 
1973 10.0  
1974 10.7  
1975 7.9 
1976 21.9  
1977 12.5  
1978 14.5  
1979 9.2 

i. Enter the data into R.  [Section 1.3.1 showed one way to do this.  To save keystrokes, enter the successive 
years as 1970:11970:11970:11970:1979979979979] 

ii. Plot snow.coversnow.coversnow.coversnow.cover versus yearyearyearyear. 

iii Use the hist()hist()hist()hist() command to plot a histogram of the snow cover values. 

iv. Repeat ii and iii after taking logarithms of snow cover. 

3. Input the following data, on damage that had occurred in space shuttle launches prior to the disastrous launch 
of Jan 28 1986.  These are the data, for 6 launches out of 24, that were included in the pre-launch charts that 
were used in deciding whether to proceed with the launch.  (Data for the 23 launches where information is 
available is in the data set oringsoringsoringsorings that accompanies these notes.) 

Temperature Erosion    Blowby    Total 
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2. An Overview of R 

2.1 The Uses of R 
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2.1.3 R has extensive graphical abilities 

The main R graphics function is plot()plot()plot()plot(). In addition to plot()plot()plot()plot() there are functions for adding points and lines 
to existing graphs, for placing text at specified positions, for specifying tick marks and tick labels, for labelling 
axes, and so on.  

There are various other alternative helpful forms of graphical summary. A helpful graphical summary for the 
hillshillshillshills data frame is the scatterplot matrix, shown in Fig. 5.  For this, type: 

> pairs> pairs> pairs> pairs(hills)(hills)(hills)(hills)    
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2.3 R Objects 
All R entities, including functions and data structures, exist as objects.  They can all be operated on as data.  
Type in ls()ls()ls()ls() to see the names of all objects in your workspace.  An alternative to ls()ls()ls()ls() is objects()objects()objects()objects().  In 
both cases there is provision to specify a particular pattern, e.g. starting with the letter `p’8.  

Typing the name of an object causes the printing of its contents.  Try typing qqqq, meanmeanmeanmean,  etc. 

Important: On quitting, R offers the option of saving the workspace image. This allows the retention, for use in 
the next session in the same workspace, any objects that were created in the current session.  Careful 
housekeeping may be needed to distinguish between objects that are to be kept and objects that will not be used 
again.  Before typing q()q()q()q() to quit, use rm()rm()rm()rm() to remove objects that are no longer required.  Saving the 
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There is a much easier (and better) way to do this calculation: 
> sum(c(31,51,91))> sum(c(31,51,91))> sum(c(31,51,91))> sum(c(31,51,91))    

[1] 173[1] 173[1] 173[1] 173    

Skilled R users have limited recourse to loops.  There are often, as in the example above, better alternatives. 

2.5 R Functions 
We give two simple examples of R functions. 

2.5.1 An Approximate Miles to Kilometers Conversion 
miles.to.km <miles.to.km <miles.to.km <miles.to.km <---- function(miles)miles*8/5 function(miles)miles*8/5 function(miles)miles*8/5 function(miles)miles*8/5    

The return value is the value of the final (and in this instance only) expression that appears in the function 
body11. Use the function thus 

> miles.to.km(17> miles.to.km(17> miles.to.km(17> miles.to.km(175)  # Approximate distance to Sydney, in miles5)  # Approximate distance to Sydney, in miles5)  # Approximate distance to Sydney, in miles5)  # Approximate distance to Sydney, in miles    

[1] 280[1] 280[1] 280[1] 280    

The function will do the conversion for several distances all at once.  To convert a vector of the three distances 
100, 200 and 300 miles to distances in kilometers, specify: 

> miles.to.km(c(100,200,30> miles.to.km(c(100,200,30> miles.to.km(c(100,200,30> miles.to.km(c(100,200,300))0))0))0))    

[1] 160 320 480[1] 160 320 480[1] 160 320 480[1] 160 320 480    

2.5.2 A Plotting function 

The data set floridafloridafloridaflorida has the votes in the 2000 election for the various US Presidential candidates, county by 
county in the state of Florida.  The following plots the vote for Buchanan against the vote for Bush. 

attach(florida)attach(florida)attach(florida)attach(florida)    

plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)plot(BUSH, BUCHANAN, xlab=”Bush”, ylab=”Buchanan”)    

detach(florida)   # In Sdetach(florida)   # In Sdetach(florida)   # In Sdetach(florida)   # In S----PLUS, specify detach(“florida”)PLUS, specify detach(“florida”)PLUS, specify detach(“florida”)PLUS, specify detach(“florida”)    

Here is a function that makes it possible to plot the figures for any pair of candidates. 
plot.florida <plot.florida <plot.florida <plot.florida <---- function(xvar=”BUSH”, yv function(xvar=”BUSH”, yv function(xvar=”BUSH”, yv function(xvar=”BUSH”, yvar=”BUCHANAN”){ar=”BUCHANAN”){ar=”BUCHANAN”){ar=”BUCHANAN”){    

x <x <x <x <---- florida[,xvar] florida[,xvar] florida[,xvar] florida[,xvar]    

y<y<y<y<---- florida[,yvar] florida[,yvar] florida[,yvar] florida[,yvar]    

plot(x, y, xlab=xvar,ylab=yvar)plot(x, y, xlab=xvar,ylab=yvar)plot(x, y, xlab=xvar,ylab=yvar)plot(x, y, xlab=xvar,ylab=yvar)    

m0.0267 TD
-0.TD
-
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The concatenate function c()c()c()c() may also be used to join lists. 

2.6.2 Subsets of Vectors 

There are two common ways to extract subsets of vectors13. 

1. Specify the numbers of the elements that are to be extracted, e.g.  
> x <> x <> x <> x <---- c(3,11,8,15,12)  # Assign to x the values 3, 11, 8, 15, 12 c(3,11,8,15,12)  # Assign to x the values 3, 11, 8, 15, 12 c(3,11,8,15,12)  # Assign to x the values 3, 11, 8, 15, 12 c(3,11,8,15,12)  # Assign to x the values 3, 11, 8, 15, 12    

> x[c(2,4)]   # Extract elements (rows) 2 and 4> x[c(2,4)]   # Extract elements (rows) 2 and 4> x[c(2,4)]   # Extract elements (rows) 2 and 4> x[c(2,4)]   # Extract elements (rows) 2 and 4    

[1] 11 15[1] 11 15[1] 11 15[1] 11 15    

One can use negative numbers to omit elements: 
> x <> x <> x <> x <---- c(3,11,8,15 c(3,11,8,15 c(3,11,8,15 c(3,11,8,15,12),12),12),12)    

> x[> x[> x[> x[----c(2,3)]c(2,3)]c(2,3)]c(2,3)]    

[1]  3 15 12[1]  3 15 12[1]  3 15 12[1]  3 15 12    

2. Specify a vector of logical values.  The elements that are extracted are those for which the logical value is TTTT.  
Thus suppose we want to extract values of xxxx that are greater than 10. 

> x>10  # This generates a vector of l> x>10  # This generates a vector of l> x>10  # This generates a vector of l> x>10  # This generates a vector of logical (T or F)



16 

gender <gender <gender <gender <---- c(rep(“female”,6 c(rep(“female”,6 c(rep(“female”,6 c(rep(“female”,691), rep(“male”,692))91), rep(“male”,692))91), rep(“male”,692))91), rep(“male”,692))    

(The usage is that rep(“female”, 691)rep(“female”, 691)rep(“female”, 691)rep(“female”, 691) creates 691 copies of the character string “female”, and similarly 
for the creation of 692 copies of “male”.) 

We can change the vector to a factor, by entering: 
gender <gender <gender <gender <---- factor(gender) factor(gender) factor(gender) factor(gender)    

Internally the factor gendergendergendergender is stored as 691 1’s, followed by 692 2’s.  It has stored with it a table that looks 
like this: 

1 female 

2 male 

Once stored as a factor, the space required for storage is reduced. 

Whenever the context seems to demand a character string, the 1 is translated into “female” and the 2 into “male”.  
The values “female” and “male” are the levels of the factor.  By default, the levels are in alphanumeric order, so 
that “female” precedes “male”.  Hence: 

> levels(gender)  # Assumes gender is a factor, created as above 

[1] "female" "male"  

The order of the levels in a factor determines the order in which the levels appear in graphs that use this 
information, and in tables.  To cause “male” to come before “female”, use 

gender <gender <gender <gender <---- relevel(gender, ref= relevel(gender, ref= relevel(gender, ref= relevel(gender, ref=“male”)“male”)“male”)“male”)    

An alternative is 
gender <gender <gender <gender <---- factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”))    

This last syntax is available both when the factor is first created, or later when one wishes to change the order of 
levels in an existing factor.  Incorrect spelling of the level names will generate an error message. Try 

gender <gender <gender <gender <---- factor(c(rep(“female”,691), rep(“male”,692))) factor(c(rep(“female”,691), rep(“male”,692))) factor(c(rep(“female”,691), rep(“male”,692))) factor(c(rep(“female”,691), rep(“male”,692)))    

table(gender)table(gender)table(gender)table(gender)    

gender <gender <gender <gender <---- factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”)) factor(gender, levels=c(“male”, “female”))    

table(gender)table(gender)table(gender)table(gender)    

gender <gender <gender <gender <---- factor(gender, levels=c(“Male”, “female”))   factor(gender, levels=c(“Male”, “female”))   factor(gender, levels=c(“Male”, “female”))   factor(gender, levels=c(“Male”, “female”))      

                                    # Erroneou# Erroneou# Erroneou# Erroneous s 
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of passengers for cars in this category), Max.passengers, No.of.carsMax.passengers, No.of.carsMax.passengers, No.of.carsMax.passengers, No.of.cars., and abbrevabbrevabbrevabbrev.  The first three 
columns have mode numeric, and the fourth has mode character.  Columns can be vectors of any mode.  The 
column abbrevabbrevabbrevabbrev could equally well be stored as a factor.  

Any of the following15 will pick out the fourth column of the data frame Cars93.summaryCars93.summaryCars93.summaryCars93.summary, then storing it in 
the vector typetypetypetype. 

type <type <type <type <---- Cars93.summary$abbrev Cars93.summary$abbrev Cars93.summary$abbrev Cars93.summary$abbrev    

type <type <type <type <---- Cars93.summary[,4] Cars93.summary[,4] Cars93.summary[,4] Cars93.summary[,4]    

type <type <type <type <---- Cars93.summary[,”abbrev”] Cars93.summary[,”abbrev”] Cars93.summary[,”abbrev”] Cars93.summary[,”abbrev”]    

type <type <type <type <---- Cars93.summary[[4]]  Cars93.summary[[4]]  Cars93.summary[[4]]  Cars93.summary[[4]]    
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2.8 Common Useful Functions 
print()   print()   print()   print()       # Prints a single R object# Prints a single R object# Prints a single R object# Prints a single R object    

cat()     cat()     cat()     cat()         # Prints multiple objects, one after the other# Prints multiple objects, one after the other# Prints multiple objects, one after the other# Prints multiple objects, one after the other    

lelelelength()  ngth()  ngth()  ngth()      # Number of elements in a vector or of a list# Number of elements in a vector or of a list# Number of elements in a vector or of a list# Number of elements in a vector or of a list    

mean()mean()mean()mean()    

median()median()median()median()    

range()range()range()range()    

unique()  unique()  unique()  unique()      # Gives the vector of distinct values# Gives the vector of distinct values# Gives the vector of distinct values# Gives the vector of distinct values    

diff()    diff()    diff()    diff()        # Replace a vector by the vector of first differences# Replace a vector by the vector of first differences# Replace a vector by the vector of first differences# Replace a vector by the vector of first differences    

               # N. B. diff(x) has one less element than x       # N. B. diff(x) has one less element than x       # N. B. diff(x) has one less element than x       # N. B. diff(x) has one less element than x    

sort()    sort()    sort()    sort()        # Sort elements into order, but omitting NAs# Sort elements into order, but omitting NAs# Sort elements into order, but omitting NAs# Sort elements into order, but omitting NAs    

order()order()order()order()    # x[order(x)] orders elements of x, with NAs last# x[order(x)] orders elements of x, with NAs last# x[order(x)] orders elements of x, with NAs last# x[order(x)] orders elements of x, with NAs last    

cumsum()cumsum()cumsum()cumsum()    

cumprod()cumprod()cumprod()cumprod()    

rev()     rev()     rev()     rev()         # reverse the order of vector elements# reverse the order of vector elements# reverse the order of vector elements# reverse the order of vector elements    

    

The functions mean() mean() mean() mean(), median() median() median() median(), range(), range(), range(), range(), and a number of other functions, take the argument 
na.rm=T; na.rm=T; na.rm=T; na.rm=T; i.e. remove NAs, then proceed with the calculation. 

By default, sort()sort()sort()sort() omits any NAs. The function order()order()order()order() places NAs last.  Hence: 
> x <> x <> x <> x <---- c(1, 20,  2, NA, 22) c(1, 20,  2, NA, 22) c(1, 20,  2, NA, 22) c(1, 20,  2, NA, 22)    

> order(x)> order(x)> order(x)> order(x)    

[1] 1 3 2 5 4[1] 1 3 2 5 4[1] 1 3 2 5 4[1] 1 3 2 5 4    

> x[order(x)]> x[order(x)]> x[order(x)]> x[order(x)]    

[1]  1  2 20 22 NA[1]  1  2 20 22 NA[1]  1  2 20 22 NA[1]  1  2 20 22 NA    

> sort(x)> sort(x)> sort(x)> sort(x)    

[1]  1  2[1]  1  2[1]  1  2[1]  1  2 20 22 20 22 20 22 20 22    

2.8.1 Applying a function to all columns of a data frame 

The function sapply()sapply()sapply()sapply()

 does this.  It takes as arguments the name of the data frame, and the function that is to 
be applied.  Here are examples, using the supplied data set rainforestrainforestrainforestrainforest

18. 
> sappl> sappl> sappl> sapply(rainforest, is.factor)y(rainforest, is.factor)y(rainforest, is.factor)y(rainforest, is.factor)    

    dbh    wood    bark    root  rootsk  branch species     dbh    wood    bark    root  rootsk  branch species     dbh    wood    bark    root  rootsk  branch species     dbh    wood    bark    root  rootsk  branch species     

  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE    TRUE   FALSE   FALSE   FALSE   FALSE   FALSE   FALSE    TRUE     

> sapply(rainforest[,> sapply(rainforest[,> sapply(rainforest[,> sapply(rainforest[,----7], range)   # The final column (7) is a factor7], range)   # The final column (7) is a factor7], range)   # The final column (7) is a factor7], range)   # The final column (7) is a factor    

     dbh wood bark root rootsk branch     dbh wood bark root rootsk branch     dbh wood bark root rootsk branch     dbh wood bark root rootsk branch    

[1,]   4 [1,]   4 [1,]   4 [1,]   4   NA   NA   NA     NA     NA  NA   NA   NA     NA     NA  NA   NA   NA     NA     NA  NA   NA   NA     NA     NA    

[2,]  56   NA   NA   NA     NA     NA[2,]  56   NA   NA   NA     NA     NA[2,]  56   NA   NA   NA     NA     NA[2,]  56   NA   NA   NA     NA     NA    

The functions mean and range, and several of the other functions noted above, have parameters na.rmna.rmna.rmna.rm.  For 
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[1] ".GlobalEnv"   "Autoloads"    "package:base"[1] ".GlobalEnv"   "Autoloads"    "package:base"[1] ".GlobalEnv"   "Autoloads"    "package:base"[1] ".GlobalEnv"   "Autoloads"    "package:base"    
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3. Plotting 



22 

3.2 Fine control – Parameter settings 
The default settings of parameters, such as character size, are often adequate.  When it is necessary to change 
parameter settings for a subsequent plot, the par()par()par()par() function does this.  For example, 

par(cex=1.25, mex=1.25)   # character (cex) & margin (mex) expansionpar(cex=1.25, mex=1.25)   # character (cex) & margin (mex) expansionpar(cex=1.25, mex=1.25)   # character (cex) & margin (mex) expansionpar(cex=1.25, mex=1.25)   # character (cex) & margin (mex) expansion    

increases the text and plot symbol size 25% above the default.  The addition of mex=1.25mex=1.25mex=1.25mex=1.25 makes room in the 
margin to accommodate the increased text size. 

On the first use of par()par()par()par() to make changes to the current device, it is often useful to store existing settings, so 
that they can be restored later.  For this, specify 

oldpar <oldpar <oldpar <oldpar <---- par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25)    

This stores the existing settings in oldparoldparoldparoldpar, then changes parameters (here cexcexcexcex and mexmexmexmex) as requested.  To 
restore the original parameter settings at some later time, enter par(oldpar)par(oldpar)par(oldpar)par(oldpar).  Here is an example: 

attach(elasattach(elasattach(elasattach(elasticband)  ticband)  ticband)  ticband)      

oldpar <oldpar <oldpar <oldpar <---- par(cex=1.5, mex=1.5) par(cex=1.5, mex=1.5) par(cex=1.5, mex=1.5) par(cex=1.5, mex=1.5)    

plot(distance ~ stretch) plot(distance ~ stretch) plot(distance ~ stretch) plot(distance ~ stretch)     

par(oldpar)         # Restores the earlier settingspar(oldpar)         # Restores the earlier settingspar(oldpar)         # Restores the earlier settingspar(oldpar)         # Restores the earlier settings    

detach(elasticband) detach(elasticband) detach(elasticband) detach(elasticband)     

Inside a function specify, e.g. 
oldpar <oldpar <oldpar <oldpar <---- par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25) par(cex=1.25, mex=1.25)    

on.exit(par(oldpar))on.exit(par(oldpar))on.exit(par(oldpar))on.exit(par(oldpar))    

Type in help(par)help(par)help(par)help(par) to get details of all the parameter settings that are available with par()par()par()par(). 

3.2.1 Multiple plots on the one page 

The parameter mfrowmfrowmfrowmfrow can be used to configure the graphics sheet so that subsequent plots appear row by row, 
one after the other in a rectangular layout, on the one page.  For a column by column layout, use mfcol mfcol mfcol mfcol 
instead.  In the example below we present four different transformations of the primates data, in a two by two 
layout: 

par(mfrow=c(2,2), pch=16)par(mfrow=c(2,2), pch=16)par(mfrow=c(2,2), pch=16)par(mfrow=c(2,2), pch=16)    

data(Animals)     # Needed if Animals (MASS librarydata(Animals)     # Needed if Animals (MASS librarydata(Animals)     # Needed if Animals (MASS librarydata(Animals)     # Needed if Animals (MASS library) is not already loaded) is not already loaded) is not already loaded) is not already loaded    

attach(Animals)attach(Animals)attach(Animals)attach(Animals)    

plot(body, brain)plot(body, brain)plot(body, brain)plot(body, brain)    

plot(sqrt(body), sqrt(brain))plot(sqrt(body), sqrt(brain))plot(sqrt(body), sqrt(brain))plot(sqrt(body), sqrt(brain))    

plot((body)^0.1, (brain)^0.1)plot((body)^0.1, (brain)^0.1)plot((body)^0.1, (brain)^0.1)plot((body)^0.1, (brain)^0.1)    

plot(log(body),log(brain))plot(log(body),log(brain))plot(log(body),log(brain))plot(log(body),log(brain))    

detach(Animals)detach(Animals)detach(Animals)detach(Animals)    

par(mfrow=c(1,1), pch=1)      # Restore to 1 figure per pagepar(mfrow=c(1,1), pch=1)      # Restore to 1 figure per pagepar(mfrow=c(1,1), pch=1)      # Restore to 1 figure per pagepar(mfrow=c(1,1), pch=1)      # Restore to 1 figure per page    

3.2.2 The shape of the graph sheet 

Often it is desirable to exercise contr1 0over the shape of the graph page, e.g. so that the individual plots are 
rectangular rather than square.  The R for Windows functions win.graph()win.graph()win.graph()win.graph() or x11()x11()x11()x11() that set up the 
Windows screen take the parameters widthwidthwidthwidth (in inches), heightheightheightheight (in inches) and pointsizepointsizepointsizepointsize (in 1/72 of an 
inch).  The setting of pointsizepointsizepointsizepointsize (default =12) determines character heights.  It is the relative sizes of these 
parameters that matter for screen display or for incorporation into Word and similar programs.  Graphs can be 
enlarged orj
0runk by pointing at one corner, holding down the left mouse button, and pulling. 
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3.3 Adding points, lines and text 
Here is a simple example that shows how to use the function text()text()text()text() to add text labels to the points on a plot. 

> primates> primates> primates> primates    

               Bodywt Brainwt                Bodywt Brainwt                Bodywt Brainwt                Bodywt Brainwt     

 Potar monkey    10.0     115 Potar monkey    10.0     115 Potar monkey    10.0     115 Potar monkey    10.0     115    

      Gorilla   207.0     406      Gorilla   207.0     406      Gorilla   207.0     406      Gorilla   207.0     406    

        Human    62.0    1320        Human    62.0    1320        Human    62.0    1320        Human    62.0    1320    

Rhesus monkey     6.8     179Rhesus monkey     6.8     179Rhesus monkey     6.8     179Rhesus monkey     6.8     179    

        Chimp    52.2     440        Chimp    52.2     440        Chimp    52.2     440        Chimp    52.2     440    

Observe that the row names store labels for each row20. 
> attach(primates)  # Needed if primates is not already attached.> attach(primates)  # Needed if primates is not already attached.> attach(primates)  # Needed if primates is not already attached.> attach(primates)  # Needed if primates is not already attached.    

> plot(Bodywt, Brainwt, xlim=c(5, 250))> plot(Bodywt, Brainwt, xlim=c(5, 250))> plot(Bodywt, Brainwt, xlim=c(5, 250))> plot(Bodywt, Brainwt, xlim=c(5, 250))    

> # Specify xlim so that there is room for the labels> # Specify xlim so that there is room for the labels> # Specify xlim so that there is room for the labels> # Specify xlim so that there is room for the labels    

> text(x=Bodywt, y=Brainwt, labels=row.names(primates), adj=0) > text(x=Bodywt, y=Brainwt, labels=row.names(primates), adj=0) > text(x=Bodywt, y=Brainwt, labels=row.names(primates), adj=0) > text(x=Bodywt, y=Brainwt, labels=row.names(primates), adj=0)     

   # adj=0 implies left adjusted   # adj=0 implies left adjusted   # adj=0 implies left adjusted   # adj=0 implies left adjusted text text text text    

> detach(primates)> detach(primates)> detach(primates)> detach(primates)    

Fig. 7 shows the result. 
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Figure 7: Plot of the primate data, with labels on points 

 

Fig. 7 would be adequate for identifying points, but is not a presentation quality graph.  We now show how to 
improve it.   

                                                           
20 Row names can be created in several different ways.  They can be assigned directly, e.g. 

row.names(primates) <row.names(primates) <row.names(primates) <row.names(primates) <---- c("Potar monkey","Gorilla","Human","Rhesus monkey","Chimp") c("Potar monkey","Gorilla","Human","Rhesus monkey","Chimp") c("Potar monkey","Gorilla","Human","Rhesus monkey","Chimp") c("Potar monkey","Gorilla","Human","Rhesus monkey","Chimp")    

When using read.table()read.table()read.table()read.table() to input data, the parameter row.namesrow.namesrow.namesrow.names is available to specify, by number or 
name, a column that holds the row names. 
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In Fig. 8 we use the xlabxlabxlabxlab (x-axis) and ylabylabylabylab
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points(1:7,rep(2,7), pch=(0:6)+7)points(1:7,rep(2,7), pch=(0:6)+7)points(1:7,rep(2,7), pch=(0:6)+7)points(1:7,rep(2,7), pch=(0:6)+7)        # Plot symbols 7 to 13# Plot symbols 7 to 13# Plot symbols 7 to 13# Plot symbols 7 to 13    

text((1:7)+0.25, rep(2,7), paste((0:6)+7))  # Label with symbol numbertext((1:7)+0.25, rep(2,7), paste((0:6)+7))  # Label with symbol numbertext((1:7)+0.25, rep(2,7), paste((0:6)+7))  # Label with symbol numbertext((1:7)+0.25, rep(2,7), paste((0:6)+7))  # Label with symbol number    

points(1:7,rep(1,7), pch=(0:6)+14)points(1:7,rep(1,7), pch=(0:6)+14)points(1:7,rep(1,7), pch=(0:6)+14)points(1:7,rep(1,7), pch=(0:6)+14)        # Plot symbols 14 to 20# Plot symbols 14 to 20# Plot symbols 14 to 20# Plot symbols 14 to 20    

text((1:7)+0.25, rep(1,7), paste((0:6)+14)) # Labels wittext((1:7)+0.25, rep(1,7), paste((0:6)+14)) # Labels wittext((1:7)+0.25, rep(1,7), paste((0:6)+14)) # Labels wittext((1:7)+0.25, rep(1,7), paste((0:6)+14)) # Labels with symbol numberh symbol numberh symbol numberh symbol number    

Here is the plot: 
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Figure 9: Different plot symbols, colours and sizes 

 

A variety of color palettes are available.  Iere is a function that displays some of the possibilities: 
view.colours <view.colours <view.colours <view.colours <---- function(){ function(){ function(){ function(){    

plot(1, 1, xlim=c(0,14), ylim=c(0,3plot(1, 1, xlim=c(0,14), ylim=c(0,3plot(1, 1, xlim=c(0,14), ylim=c(0,3plot(1, 1, xlim=c(0,14), ylim=c(0,3), type="n", axes=F, xlab="",ylab="")), type="n", axes=F, xlab="",ylab="")), type="n", axes=F, xlab="",ylab="")), type="n", axes=F, xlab="",ylab="")    

text(1:6, rep(2.5,6), paste(1:6), col=palette()[1:6], cex=2.5)text(1:6, rep(2.5,6), paste(1:6), col=palette()[1:6], cex=2.5)text(1:6, rep(2.5,6), paste(1:6), col=palette()[1:6], cex=2.5)text(1:6, rep(2.5,6), paste(1:6), col=palette()[1:6], cex=2.5)    

text(10, 2.5, "Default palette", adj=0)text(10, 2.5, "Default palette", adj=0)text(10, 2.5, "Default palette", adj=0)text(10, 2.5, "Default palette", adj=0)    

rainchars <rainchars <rainchars <rainchars <---- c("R","O","Y","G","B","I","V") c("R","O","Y","G","B","I","V") c("R","O","Y","G","B","I","V") c("R","O","Y","G","B","I","V")    

text(1:7, rep(1.5,7), rainchars, col=rainbow(7), cex=2.5)text(1:7, rep(1.5,7), rainchars, col=rainbow(7), cex=2.5)text(1:7, rep(1.5,7), rainchars, col=rainbow(7), cex=2.5)text(1:7, rep(1.5,7), rainchars, col=rainbow(7), cex=2.5)    

text(10, 1.5,text(10, 1.5,text(10, 1.5,text(10, 1.5, "rainbow(7)", adj=0) "rainbow(7)", adj=0) "rainbow(7)", adj=0) "rainbow(7)", adj=0)    

cmtxt <cmtxt <cmtxt <cmtxt <---- substring("cm.colors", 1:9,1:9)   substring("cm.colors", 1:9,1:9)   substring("cm.colors", 1:9,1:9)   substring("cm.colors", 1:9,1:9)      

   # Split “cm.colors” into its 9 characters   # Split “cm.colors” into its 9 characters   # Split “cm.colors” into its 9 characters   # Split “cm.colors” into its 9 characters    

text(1:9, rep(0.5,9), cmtxt, col=cm.colors(9), cex=3)text(1:9, rep(0.5,9), cmtxt, col=cm.colors(9), cex=3)text(1:9, rep(0.5,9), cmtxt, col=cm.colors(9), cex=3)text(1:9, rep(0.5,9), cmtxt, col=cm.colors(9), cex=3)    

text(10, 0.5, "cm.colors(9)", adj=0)text(10, 0.5, "cm.colors(9)", adj=0)text(10, 0.5, "cm.colors(9)", adj=0)text(10, 0.5, "cm.colors(9)", adj=0)    

}}}}    

To run the function, enter 
view.colours()view.colours()view.colours()view.colours()    

3.3.2 Adding Text in the Margin 

mtext(side, line, text, ..)mtext(side, line, text, ..)mtext(side, line, text, ..)mtext(side, line, text, ..) adds text in the margin of the current plot.  The sides are numbered 
1(x-axis), 2(y-axis), 3(top) and 4. 

3.4 Identification and Location on the Figure Region 
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! locator() prints out the co-ordinates of points.  One positions the cursor at the location for which 
coordinates are required, and clicks the left mouse button. 

A click with the right mouse button signifies that the identification or location task is complete, unless the setting 
of the parameter nnnn is reached first.  For identify()
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Figure 10: The two graphs show the same data, but with a different choice of breakpoints. 

 

Here is the code used to plot the histograms: 
par(mfrow = c(1, 2))par(mfrow = c(1, 2))par(mfrow = c(1, 2))par(mfrow = c(1, 2))    

attach(possum)attach(possum)attach(possum)attach(possum)    

here <here <here <here <---- sex == "f" sex == "f" sex == "f" sex == "f"    

hist(totlngth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),    

          xlab="Total length", main ="A: Breaks at 7          xlab="Total length", main ="A: Breaks at 7          xlab="Total length", main ="A: Breaks at 7          xlab="Total length", main ="A: Breaks at 72.5, 77.5, ...")2.5, 77.5, ...")2.5, 77.5, ...")2.5, 77.5, ...")    

hist(totlngth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),hist(totlngth[here], breaks = 75 + (0:5) * 5, ylim = c(0, 22),    

          xlab="Total length", main="B: Breaks at 75, 80, ...")          xlab="Total length", main="B: Breaks at 75, 80, ...")          xlab="Total length", main="B: Breaks at 75, 80, ...")          xlab="Total length", main="B: Breaks at 75, 80, ...")    

par(mfrow=c(1,1))par(mfrow=c(1,1))par(mfrow=c(1,1))par(mfrow=c(1,1))    

detach(possum)detach(possum)detach(possum)detach(possum)    

3.5.2 Density Plots 

Density plots, now that they are available, are often a preferred alternative to a histogram.  In Fig. 11 the 
histograms from Figure 10 are overlaid with a density plot. 
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lines(dens)lines(dens)lines(dens)lines(dens)    

detach(possum)detach(possum)detach(possum)detach(possum)    

3.5.3 Boxplots 

We now make a boxplot of the above data: 
attach(possum)attach(possum)attach(possum)attach(possum)     t o t l n g t h [ h e r e ] 2 6 7  T D 
 ( a t t a c h ( p o s s u m ) ) T b  T f 
 9 . ( t o t l n g t h [ h e r e ] 2 6 7  T D - 0 . 0 2 6 7  0 . 0 2 6 b  T f 
 9 . ( t o t l n g t h [ h e r e ] 2 6 7  T D 
 ( a t t a c h ( p o s s u m ) ) - b  T f 
 9 . ( t o t l n g t h [ h e r e ] 2 6 7 . 0 2 6 7  T D 
 0  T 1 3 . 8     d e t a c h ( p o s s u m )d e t a c h ( p o s s u m )d e t a c h ( p o s s u m )d e t a c h ( p o s s u m )     
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3.6.2 Adding lines to plots 

Use the function abline()T4.8193ine()-1.1ts 
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data(islands)     # if not already loadeddata(islands)     # if not already loadeddata(islands)     # if not already loadeddata(islands)     # if not already loaded    

dotplot(islands)  # vector of named numeric valuesdotplot(islands)  # vector of named numeric valuesdotplot(islands)  # vector of named numeric valuesdotplot(islands)  # vector of named numeric values    

Unfortunately there are many names, and there is substantial overlap.  The following is better, but shrinks the 
sizes of the points so that they almost disappear: 

dotplot(islands, cex=0.2)dotplot(islands, cex=0.2)dotplot(islands, cex=0.2)dotplot(islands, cex=0.2)    

3.7 Plotting Mathematical Symbols  
Both text()text()text()text() and mtext()mtext()mtext()mtext() will take an expression rather than a text string.  InInInIn plot() plot() plot() plot(), either or both of 
xlabxlabxlabxlab and ylabylabylabylab can be an expression.  Fig. 15 was produced with 

plot(x, y, xlab=”Radius”, ylab=expression(Area == pi*r^2))plot(x, y, xlab=”Radius”, ylab=expression(Area == pi*r^2))plot(x, y, xlab=”Radius”, ylab=expression(Area == pi*r^2))plot(x, y, xlab=”Radius”, ylab=expression(Area == pi*r^2))    
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Figure 15: The y-axis label is a mathematical expression. 

 

Notice that in expression(Area == pi*r^2)expression(Area == pi*r^2)expression(Area == pi*r^2)expression(Area == pi*r^2), there is a double equals sign (“==”==”==”==”), although what will 
appear on the plot is Area = pi*r^2, with a single equals sign.  The reason for this is that Area == pi*r^2Area == pi*r^2Area == pi*r^2Area == pi*r^2 is 
a valid mathematical expression, while Area = pi*r^2Area = pi*r^2Area = pi*r^2Area = pi*r^2 is not. 

See help(plotmath) for detailed information on the plotting of mathematical expressions.  There is a further 
example in chapter 12. 

The final plot from 
demo(graphics)demo(graphics)demo(graphics)demo(graphics)    

shows some of the possibilities for plotting mathematical symbols. 

3.8 Guidelines for Graphs 
Design graphs to make their point tersely and clearly, with a minimum waste of ink. Label as necessary to 
identify important features.  In scatterplots the graph should attract the eye’s attention to the points that are 
plotted, and to important grouping in the data.  Use solid points, large enough to stand out relative to other 
features, when there is little or no overlap.   

When there is extensive overlap of plotting symbols, use open plotting symbols.  Where points are dense, 
overlapping points will give a high ink density, which is exactly what one wants. 
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Use graphs from which information can be read directly and easily in preference to those that rely on visual 
impression and perspective. Thus in scientific papers contour plots are much preferable to surface plots or two-
dimensional bar graphs. 

Draw graphs so that reduction and reproduction will not interfere with visual clarity. 

Explain clearly how error bars should be interpreted — ± SE limits, ± 95% confidence interval, ± SD limits, or 
whatever.  Explain what source of `error(s)’ is represented.  It is pointless to present information on a source of 
error that is of little or no interest, for example analytical error when the relevant source of `error’ for 
comparison of treatments is between fruit. 

Use colour or different plotting symbols to distinguish different groups.  Take care to use colours that contrast. 

The list of references at the end of this chapter has further comments on graphical and other presentation issues. 

3.9 Exercises 
1. Plot the graph of brain weight (brainbrainbrainbrain) versus body weight (bodybodybodybody) for the data set Animals Animals Animals Animals from the 
MASS library.  Label the axes appropriately. 
[To access this data frame, specify library(mass);  data(Animals)library(mass);  data(Animals)library(mass);  data(Animals)library(mass);  data(Animals)] 

2. Repeat the plot 1, but this time plotting log(brain weight) versus log(body weight).  Use the row labels to label 
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6. Try x <x <x <x <---- rnorm(10) rnorm(10) rnorm(10) rnorm(10).  Print out the numbers that you get.  Look up the help for rnormrnormrnormrnorm.  Now generate a 
sample of size 10 from a normal distribution with mean 170 and standard deviation 4. 

7. Use mfrow()mfrow()mfrow()mfrow() to set up the layout for a 3 by 4 array of plots.  In the top 4 rows, show normal probability 
plots (section 3.4.2) for four separate `random’ samples of size 10, all from a normal distribution.  In the middle 
4 rows, display plots for samples of size 100.  In the bottom four rows, display plots for samples of size 100e 10
Comment on how the appearance of the plots changes as the sample size changes.  

8. The function runif()runif()runif()runif() can be used to generate a sample from a uniform distribution, by default on the 

http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/


34 

 



35 

 

4. Lattice graphics, and coplot() 

Lattice plots allow the use of the layout on the page to reflect meaningful aspects of data structure.  They offer 
abilities similar to those in the S-PLUS trellis library0 

At the time of writing the implementation of the lattice library was incomplete, though already with impressive 
functionality.  The lattice library sits on top of the grid library. To use lattice graphics, both these libraries must 
be installed.    Providing it is installed, the grid library will be loaded automatically when lattice is loaded. 

The older coplot()coplot()coplot()coplot() function that is in the base library has some of same abilities as xyplot( )xyplot( )xyplot( )xyplot( ), but with a 
limitation to two conditioning factors or variables only.   

4.1 Examples that Present Panels of Scatterplots – Using xyplot() 
The basic function for drawing panels of scatterplots is xyplot()xyplot()xyplot()xyplot().  We will use the data frame tintingtintingtintingtinting 
(supplied) to demonstrate the use of xyplot()xyplot()xyplot()xyplot().  These data are from an experiment that investigated the 
effects of tinting of car windows on visual performance24
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xyplot(csxyplot(csxyplot(csxyplot(csoa ~ it | sex * agegp, data=tinting) # Simple use of xyplot()oa ~ it | sex * agegp, data=tinting) # Simple use of xyplot()oa ~ it | sex * agegp, data=tinting) # Simple use of xyplot()oa ~ it | sex * agegp, data=tinting) # Simple use of xyplot()    

Here is the statement used to get Fig. 16.  The two different symbols distinguish between low contrast and high 
contrast targets. 
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In each instance, one can add conditioning variables. 

4.2 Using coplot() 
The lattice library makes coplot()coplot()coplot()coplot() largely redundant.  It may still be useful if the lattice library is not 
available, or if one wants its particular layout and labelling. 
We again use data from the data frame tintingtintingtintingtinting
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5. Linear (Multiple Regression) Models and Analysis of Variance 

5.1 The Model Formula in Straight Line Regression 
We begin with the straight line regression example that appeared earlier, in section 2.1.4.  First we plot the data: 

plot(distance ~ stretch, data=elasticband)plot(distance ~ stretch, data=elasticband)plot(distance ~ stretch, data=elasticband)plot(distance ~ stretch, data=elasticband)    

The code for the regression calculation is: 
elastic.lm <elastic.lm <elastic.lm <elastic.lm <---- lm(distance ~ stretch, data=elasticband) lm(distance ~ stretch, data=elasticband) lm(distance ~ stretch, data=elasticband) lm(distance ~ stretch, data=elasticband)    

Here distance ~distance ~distance ~distance ~ stretch stretch stretch stretch is a model formula.  Other model formulae will appear in the course of this 
chapter.  Fig. 18 shows the plot: 
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Residual standard error: 16.3 on 5 degrees of freedomResidual standard error: 16.3 on 5 degrees of freedomResidual standard error: 16.3 on 5 degrees of freedomResidual standard error: 16.3 on 5 degrees of freedom    

Multiple RMultiple RMultiple RMultiple R----Squared: 0.635,      Adjusted RSquared: 0.635,      Adjusted RSquared: 0.635,      Adjusted RSquared: 0.635,      Adjusted R----squared: 0.562 squared: 0.562 squared: 0.562 squared: 0.562     

FFFF----statistic: 8.71 on 1 and 5 degrees of freedom,        pstatistic: 8.71 on 1 and 5 degrees of freedom,        pstatistic: 8.71 on 1 and 5 degrees of freedom,        pstatistic: 8.71 on 1 and 5 degrees of freedom,        p----value: 0.0319 value: 0.0319 value: 0.0319 value: 0.0319     

5.2 Regression Objects 
An lmlmlmlm object is a list of named elements.  Above, we created the object elastic.lmelastic.lmelastic.lmelastic.lm . Here are the names of 
its elements: 

> names(> names(> names(> names(elasticelasticelasticelastic.lm).lm).lm).lm)    

 [1] "coefficients"  "residuals"     "effects"       "rank"          [1] "coefficients"  "residuals"     "effects"       "rank"          [1] "coefficients"  "residuals"     "effects"       "rank"          [1] "coefficients"  "residuals"     "effects"       "rank"             

 [5] "fitted.values" "assign"        "qr"         [5] "fitted.values" "assign"        "qr"         [5] "fitted.values" "assign"        "qr"         [5] "fitted.values" "assign"        "qr"            "df.residual"      "df.residual"      "df.residual"      "df.residual"      

 [9] "xlevels"       "call"          "terms"         "model"         [9] "xlevels"       "call"          "terms"         "model"         [9] "xlevels"       "call"          "terms"         "model"         [9] "xlevels"       "call"          "terms"         "model"            

Various functions are available for extracting information that you might want from the list.  This is better than 
manipulating the list directly.  Examples are: 

> coe> coe> coe> coef(elastic.lm)f(elastic.lm)f(elastic.lm)f(elastic.lm)    

(Intercept)     stretch (Intercept)     stretch (Intercept)     stretch (Intercept)     stretch     

                ----63.571       4.554 63.571       4.554 63.571       4.554 63.571       4.554     

> resid(elastic.lm)> resid(elastic.lm)> resid(elastic.lm)> resid(elastic.lm)    

       1        2        3        4        5        6        7        1        2        3        4        5        6        7        1        2        3        4        5        6        7        1        2        3        4        5        6        7     

  2.1071    2.1071    2.1071    2.1071  ----0.3214  18.0000   1.8929 0.3214  18.0000   1.8929 0.3214  18.0000   1.8929 0.3214  18.0000   1.8929 ----27.7857  13.3214  27.7857  13.3214  27.7857  13.3214  27.7857  13.3214  ----7.2143 7.2143 7.2143 7.2143     

The function most often used to inspect regression output is summary()
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par(mfrow = c(2, 2))par(mfrow = c(2, 2))par(mfrow = c(2, 2))par(mfrow = c(2, 2))    

plot(plot(plot(plot(elasticelasticelasticelastic.lm).lm).lm).lm)    
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The following are the fitted values and residuals that we get with the estimates of a (= -63.6) and b ( = 4.55)  that 
result from least squares regression: 

X  ŷ   y  yy ˆ−  

 Stretch (mm)  (Fitted)  (Observed)  (Residual) 

× -63.6 × 4.55  1 × -63.6 + 4.55 × Stretch  Distance (mm)  Observed - 
Fitted 

 1    46     -63.6 + 4.55 × 46 = 145.7           148  148-145.7 =  2.3 

 1    54     -63.6 + 4.55 × 54 = 182.1           182  182-182.1 = -0.1 

 1    48     -63.6 + 4.55 × 48 = 154.8           173  173-154.8 = 
18.2 

 1    50     -63.6 + 4.55 × 50 = 163.9           166  166-163.9 =  2.1 

 1    44     -63.6 + 4.55 × 44 = 136.6           109  109-136.6 = -
27.6 

 1    42     -63.6 + 4.55 × 42 = 127.5           141  141-127.5 = 
13.5 

 1    52     -63.6 + 4.55 × 52 = 173.0           166  166-173.0 = -7.0 

 

Note that we use ŷ  [pronounced y-hat] as the symbol for predicted values.   

We might alternatively fit the simpler (no intercept) model. For this we have 

  y = x × b + e 

where e is a random variable with mean 0.  The X matrix then consists of a single column, the x’s. 

5.3.1 Model Formulae in General 
Model formulae take a form such as: 

y~x+zy~x+zy~x+zy~x+z  : lm, glm,, etc. 

y~x + fac + fac:x y~x + fac + fac:x y~x + fac + fac:x y~x + fac + fac:x : lm, glm, aov, etc.  (If facfacfacfac is a factor and xxxx is a variable, fac:xfac:xfac:xfac:x allows a 
different slope for each different level of facfacfacfac.) 

Model formulaeare widely used to set up most of the model calculations in R.   

Notice the similarity between model formulaeand the formulaethat are used for specifying coplots.  Thus, recall 
that the graph formula for a coplot that gives a plot of yyyy against x x x x for each different combination of levels of 
fac1fac1fac1fac1 (across the page) and fac2fac2fac2fac2 (up the page) is: 

y ~ x | fac1+fac2y ~ x | fac1+fac2y ~ x | fac1+fac2y ~ x | fac1+fac2 

*5.3.2 Manipulating Model Formulae 
Model formulae can be assigned, e.g. 

formyxz <- formula(y~x+z) 

or 
formyxz <- formula(“y~x+z”)    

The argument to formula()formula()formula()formula()
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> formds <> formds <> formds <> formds <---- formula(paste(nam[1],"~",nam[2])) formula(paste(nam[1],"~",nam[2])) formula(paste(nam[1],"~",nam[2])) formula(paste(nam[1],"~",nam[2]))    

> lm(formds, data=elasticband)> lm(formds, data=elasticband)> lm(formds, data=elasticband)> lm(formds, data=elasticband)    

    

Call:Call:Call:Call:    

lm(formula = formds, data = elasticband)lm(formula = formds, data = elasticband)lm(formula = formds, data = elasticband)lm(formula = formds, data = elasticband)    

    

Coefficients:Coefficients:Coefficients:Coefficients:    

(Intercept)     dista(Intercept)     dista(Intercept)     dista(Intercept)     distance  nce  nce  nce      

    26.3780       0.1395    26.3780       0.1395    26.3780       0.1395    26.3780       0.1395    

Note that graphics formulae can be manipulated in exactly the same way as model formulae. 

5.4 Multiple Linear Regression Models 

5.4.1 The data frame Rubber 
The data set RubberRubberRubberRubber from the MASS library is from the accelerated testing of tyre rubber26.  The variables are 
losslosslossloss (the abrasion loss in gm/hr),  hardhardhardhard (hardness in `Shore’ units), and tenstenstenstens (tensile strength in kg/sq m). 

We obtain a scatterplot matrix (Fig. 20) thus: 
library(mass)  # if neededlibrary(mass)  # if neededlibrary(mass)  # if neededlibrary(mass)  # if needed    

data(Rubber)   # if neededdata(Rubber)   # if neededdata(Rubber)   # if neededdata(Rubber)   # if needed    

pairpairpairpairs(Rubber)s(Rubber)s(Rubber)s(Rubber)    

lo ss

5 0 7 0 9 0



44 

Rubber.lm <Rubber.lm <Rubber.lm <Rubber.lm <---- lm(loss~hard+tens, data=Rubber) lm(loss~hard+tens, data=Rubber) lm(loss~hard+tens, data=Rubber) lm(loss~hard+tens, data=Rubber)    

> options(dig> options(dig> options(dig> options(digits=3)its=3)its=3)its=3)    

> summary(Rubber.lm) > optioubber)
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> summary(logbooks.lm2)$coef> summary(logbooks.lm2)$coef> summary(logbooks.lm2)$coef> summary(logbooks.lm2)$coef    

            Estimate Std. Error t value Pr(>|t|)            Estimate Std. Error t value Pr(>|t|)            Estimate Std. Error t value Pr(>|t|)            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   (Intercept)   (Intercept)   (Intercept)   ----1.263      3.552  1.263      3.552  1.263      3.552  1.263      3.552  ----0.356   0.73030.356   0.73030.356   0.73030.356   0.7303    

thick          0.313      0.472   0.662   0.5243thick          0.313      0.472   0.662   0.5243thick          0.313      0.472   0.662   0.5243thick          0.313      0.472   0.662   0.5243    

height         2.114      0.678   3.117   0.0124height         2.114      0.678   3.117   0.0124height         2.114      0.678   3.117   0.0124height         2.114      0.678   3.117   0.0124    

    

> logbooks.lm3<> logbooks.lm3<> logbooks.lm3<> logbooks.lm3<----lm(weight~thick+height+width,data=logbooks)lm(weight~thick+height+width,data=logbooks)lm(weight~thick+height+width,data=logbooks)lm(weight~thick+height+width,data=logbooks)    

> summary(logbooks.lm3)$coef> summary(logbooks.lm3)$coef> summary(logbooks.lm3)$coef> summary(logbooks.lm3)$coef    

            Estimate Std. Error t value Pr(>|t|)            Estimate Std. Error t value Pr(>|t|)            Estimate Std. Error t value Pr(>|t|)            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   (Intercept)   (Intercept)   (Intercept)   ----0.70.70.70.719      3.216  19      3.216  19      3.216  19      3.216  ----0.224    0.8290.224    0.8290.224    0.8290.224    0.829    

thick          0.465      0.434   1.070    0.316thick          0.465      0.434   1.070    0.316thick          0.465      0.434   1.070    0.316thick          0.465      0.434   1.070    0.316    

height         0.154      1.273   0.121    0.907height         0.154      1.273   0.121    0.907height         0.154      1.273   0.121    0.907height         0.154      1.273   0.121    0.907    

width          1.877      1.070   1.755    0.117width          1.877      1.070   1.755    0.117width          1.877      1.070   1.755    0.117width          1.877      1.070   1.755    0.117    

    

So is weightweightweightweight proportional to thick * height * widththick * height * widththick * height * widththick * height * width? 

The correlations between thickthickthickthick, heightheightheightheight and widthwidthwidthwidth are so strong that if one tries to use more than one of 
them as a explanatory variables, the coefficients are ill-determined. They contain very similar information, as is 
evident from the scatterplot matrix.  The regressions on heiheiheiheightghtghtght and widthwidthwidthwidth give plausible results, while the 
coefficient of the regression on thickthickthickthick is entirely an artefact of the way that the books were selected.   

The design of the data collection really is important for the interpretation of coefficients from a regression 
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4           1  125     156254           1  125     156254           1  125     156254           1  125     15625    

5           1  150     225005           1  150     225005           1  150     225005           1  150     22500    

attr(,"assign")attr(,"assign")attr(,"assign")attr(,"assign")    

[1] 0 1 2[1] 0 1 2[1] 0 1 2[1] 0 1 2    

This example demonstrates a way to extend linear models to handle specific types of non-linear relationships.  
We can use any transformation we wish to form columns of the model matrix.  We could, if we wished, add an  
x3 column. 

Once the model matrix has been formed, we are limited to taking linear combinations of columns. 

5.5.2 What order of polynomial? 

A polynomial of degree 2, i.e. a quadratic curve, looked about right for the above data.  How does one check? 

One way is to fit polynomials, e.g. of each of degrees 1 and 2, and compare them thus: 
> seedrates.lm1<> seedrates.lm1<> seedrates.lm1<> seedrates.lm1<----lm(grain~rate,data=seedrates)lm(grain~rate,data=seedrates)lm(grain~rate,data=seedrates)lm(grain~rate,data=seedrates)    

> seedrates.lm2<> seedrates.lm2<> seedrates.lm2<> seedrates.lm2<----lm(grain~rate+I(rate^2),data=seedrates)lm(grain~rate+I(rate^2),data=seedrates)lm(grain~rate+I(rate^2),data=seedrates)lm(grain~rate+I(rate^2),data=seedrates)    

> anova(se> anova(se> anova(se> anova(seedrates.lm2,seedrates.lm1)edrates.lm2,seedrates.lm1)edrates.lm2,seedrates.lm1)edrates.lm2,seedrates.lm1)    

Analysis of Variance TableAnalysis of Variance TableAnalysis of Variance TableAnalysis of Variance Table    

    

Model 1: grain ~ rate + I(rate^2)Model 1: grain ~ rate + I(rate^2)Model 1: grain ~ rate + I(rate^2)Model 1: grain ~ rate + I(rate^2)    

Model 2: grain ~ rateModel 2: grain ~ rateModel 2: grain ~ rateModel 2: grain ~ rate    

  Res.Df Res.Sum Sq Df    Sum Sq F value  Pr(>F)  Res.Df Res.Sum Sq Df    Sum Sq F value  Pr(>F)  Res.Df Res.Sum Sq Df    Sum Sq F value  Pr(>F)  Res.Df Res.Sum Sq Df    Sum Sq F value  Pr(>F)    

1      2   0.026286                             1      2   0.026286                             1      2   0.026286                             1      2   0.026286                                 

2      3   0.187000 2      3   0.187000 2      3   0.187000 2      3   0.187000 ----1 1 1 1 ----0.160714  12.228 0.07290.160714  12.228 0.07290.160714  12.228 0.07290.160714  12.228 0.07294444    

The F-value is large, but on this evidence there are too few degrees of freedom to make a totally convincing case 
for preferring a quadratic to a line. However the paper from which these data come gives an independent 
estimate of the error mean square (0.17 on 35 d.f.) based on 8 replicate results that were averaged to give each 
value for number of grains per head.  If we compare the change in the sum of squares (0.1607, on 1 df) with a 
mean square of 0.172 (35 df), the F-value is now 5.4 on 1 and 35 degrees of freedom, and we have p=0.024 .  
The increase in the number of degrees of freedom more than compensates for the reduction in the F-statistic. 

> # However we have an independent estimate of the error mean > # However we have an independent estimate of the error mean > # However we have an independent estimate of the error mean > # However we have an independent estimate of the error mean     

> # square. The estimate is 0.17^2, on 35 df.> # square. The estimate is 0.17^2, on 35 df.> # square. The estimate is 0.17^2, on 35 df.> # square. The estimate is 0.17^2, on 35 df.    

> 1> 1> 1> 1----pf(0.16/0.17^2, 1, 35)pf(0.16/0.17^2, 1, 35)pf(0.16/0.17^2, 1, 35)pf(0.16/0.17^2, 1, 35)    

[1] 0.0244[1] 0.0244[1] 0.0244[1] 0.0244    

Finally note that R2 was 0.972 for the straight line model.  This may seem good, but given the accuracy of these 
data it was not good enough!  The statistic is an inadequate guide to whether a model is adequate.  Even for any 
one context, R2 will in general increase as the range of the values of the dependent variable increases.  (R2 is 
larger when there is more variation to be explained.)  A predictive model is adequate when the standard errors of 
predicted values are acceptably small, not when R2 achieves some magic threshold. 

5.5.3 Pointwise confidence bounds for the fitted curve 
Here is code that will give pointwise 95% confidence bounds.  Note that these do not combine to give a 
confidence region for the total curve!  The construction of such a region is a much more complicated task! 

plot(grain ~ rate, data = seedrates, pch = 16, xlim = c(50, 175), ylimplot(grain ~ rate, data = seedrates, pch = 16, xlim = c(50, 175), ylimplot(grain ~ rate, data = seedrates, pch = 16, xlim = c(50, 175), ylimplot(grain ~ rate, data = seedrates, pch = 16, xlim = c(50, 175), ylim    

                 = c(15.5, 22),xlab="Seeding rate",ylab="Grains per head")                 = c(15.5, 22),xlab="Seeding rate",ylab="Grains per head")                 = c(15.5, 22),xlab="Seeding rate",ylab="Grains per head")                 = c(15.5, 22),xlab="Seeding rate",ylab="Grains per head")    

new.df <new.df <new.df <new.df <---- data.frame(rate = c((4:14) *  data.frame(rate = c((4:14) *  data.frame(rate = c((4:14) *  data.frame(rate = c((4:14) * 12.5))12.5))12.5))12.5))    

seedrates.lm2 <seedrates.lm2 <seedrates.lm2 <seedrates.lm2 <---- lm(grain ~ rate + I(rate^2), data = seedrates) lm(grain ~ rate + I(rate^2), data = seedrates) lm(grain ~ rate + I(rate^2), data = seedrates) lm(grain ~ rate + I(rate^2), data = seedrates)    

pred2 <pred2 <pred2 <pred2 <---- predict(seedrates.lm2, newdata = new.df, interval="confidence") predict(seedrates.lm2, newdata = new.df, interval="confidence") predict(seedrates.lm2, newdata = new.df, interval="confidence") predict(seedrates.lm2, newdata = new.df, interval="confidence")    

hat2 <hat2 <hat2 <hat2 <---- data.frame(fit=pred2[,"fit"],lower=pred2[,"lwr"], data.frame(fit=pred2[,"fit"],lower=pred2[,"lwr"], data.frame(fit=pred2[,"fit"],lower=pred2[,"lwr"], data.frame(fit=pred2[,"fit"],lower=pred2[,"lwr"],    

  upper=pred2[,"upr"])  upper=pred2[,"upr"])  upper=pred2[,"upr"])  upper=pred2[,"upr"])    

attach(new.df)attach(new.df)attach(new.df)attach(new.df)    
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lines(rate, hat2lines(rate, hat2lines(rate, hat2lines(rate, hat2$fit)$fit)$fit)$fit)    

lines(rate,hat2$lower,lty=2)lines(rate,hat2$lower,lty=2)lines(rate,hat2$lower,lty=2)lines(rate,hat2$lower,lty=2)    

lines(rate, hat2$upper,lty=2)lines(rate, hat2$upper,lty=2)lines(rate, hat2$upper,lty=2)lines(rate, hat2$upper,lty=2)    

detach(new.df)detach(new.df)detach(new.df)detach(new.df)    

The extrapolation has deliberately been taken beyond the range of the data, in order to show how the confidence 
bounds spread out.  Confidence bounds for a fitted line spread out more slowly, but are even less believable! 

5.5.4 Spline Terms in Linear Models 
By now, readers of this document will be used to the idea that it is possible to use linear models to fit terms that 
may be highly nonlinear functions of one or more of the variables.  The fitting of polynomial functions was a 
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> insulation <> insulation <> insulation <> insulation <- --- factor(c(rep("without", 8), rep("with", 7))) factor(c(rep("without", 8), rep("with", 7))) factor(c(rep("without", 8), rep("with", 7))) factor(c(rep("without", 8), rep("with", 7)))    
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*5.6.2 Other Choices of Contrasts 
There are other ways to set up the X matrix.  In technical jargon, there are other choices of contrasts.  One 
obvious alternative is to make withoutwithoutwithoutwithout the first factor level, so that it becomes the baseline.  For this, specify: 

insulation <insulation <insulation <insulation <---- relevel(insulation, baseline="without")       relevel(insulation, baseline="without")       relevel(insulation, baseline="without")       relevel(insulation, baseline="without")          

  # Make `without’ the baseline  # Make `without’ the baseline  # Make `without’ the baseline  # Make `without’ the baseline    
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5.7 Multiple Lines – Different Regression Lines for Different Species 
The terms that appear on the right of the model formula may be variables or factors, or interactions between 
variables and factors, or interactions between factors.  Here we take advantage of this to fit different lines to 
different subsets of the data. 

In the example that follows, we had weights for a porpoise species (Stellena styx) and for a dolphin species 
(Delphinus delphis).  We take x1 to be a variable that has the value 0 for Delphinus delphis, and 1 for Stellena 
styx.  We take x2 to be body weight.  Then possibilities we may want to consider are: 

A: A single line:  y = a + b x2
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> model.matrix(cet.lm2)> model.matrix(cet.lm2)> model.matrix(cet.lm2)> model.matrix(cet.lm2)    

   (Intercept) factor(species) logweight   (Intercept) factor(species) logweight   (Intercept) factor(species) logweight   (Intercept) factor(species) logweight    

1            1               1     3.5551            1               1     3.5551            1               1     3.5551            1               1     3.555    

2            1               1     3.7382            1               1     3.7382            1               1     3.7382            1               1     3.738    

. . . .. . . .. . . .. . . .    

8 8 8 8            1               0     3.989           1               0     3.989           1               0     3.989           1               0     3.989    

. . . .. . . .. . . .. . . .    

16           1               0     3.95116           1               0     3.95116           1               0     3.95116           1               0     3.951    

attr(,"assign")attr(,"assign")attr(,"assign")attr(,"assign")    

[1] 0 1 2[1] 0 1 2[1] 0 1 2[1] 0 1 2    

attr(,"contrasts")attr(,"contrasts")attr(,"contrasts")attr(,"contrasts")    

[1] "contr.treatment"[1] "contr.treatment"[1] "contr.treatment"[1] "contr.treatment"    

Enter summary(cet.lm2)summary(cet.lm2)summary(cet.lm2)summary(cet.lm2) to get an output summary, and plot(cet.lm2)plot(cet.lm2)plot(cet.lm2)plot(cet.lm2) to plot diagnostic information 
for this model. 

For model C, the statement is: 
> cet.lm3 <> cet.lm3 <> cet.lm3 <> cet.lm3 <---- lm(logheart ~ factor(species) + logweight +  lm(logheart ~ factor(species) + logweight +  lm(logheart ~ factor(species) + logweight +  lm(logheart ~ factor(species) + logweight +     

    factor(species):logweight, data=dolphins)    factor(species):logweight, data=dolphins)    factor(species):logweight, data=dolphins)    factor(species):logweight, data=dolphins)    

Check what the model matrix looks like: 
> model.matrix(cet.lm3)> model.matrix(cet.lm3)> model.matrix(cet.lm3)> model.matrix(cet.lm3)    

   (Intercept) factor(species) logweight fac   (Intercept) factor(species) logweight fac   (Intercept) factor(species) logweight fac   (Intercept) factor(species) logweight factor(species).logweighttor(species).logweighttor(species).logweighttor(species).logweight    

1            1               1     3.555                     3.5551            1               1     3.555                     3.5551            1               1     3.555                     3.5551            1               1     3.555                     3.555    

. . . .. . . .. . . .. . . .    

8            1               0     3.989                     0.0008            1               0     3.989                     0.0008            1               0     3.989                     0.0008            1               0     3.989                     0.000    

. . . .. . . .. . . .. . . .    

16           1               0     3.951                     0.00016           1               0     3.951                     0.00016           1               0     3.951                     0.00016           1               0     3.951                     0.000    

attr(,"assign")attr(,"assign")attr(,"assign")attr(,"assign")    

[1] 0 1 2 3[1] 0 1 2 3[1] 0 1 2 3[1] 0 1 2 3    

attr(,"contrasts")$"factor(species)" Ce m9(
-0014TD
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5.8.1 Plant Growth Example 
Here is a simple randomised block design: 

> data(PlantGrowth)               # From the MASS library> data(PlantGrowth)               # From the MASS library> data(PlantGrowth)               # From the MASS library> data(PlantGrowth)               # From the MASS library    

> attach(PlantG> attach(PlantG> attach(PlantG> attach(PlantGrowth)rowth)rowth)rowth)    

> boxplot(split(weight,group))    # Looks OK> boxplot(split(weight,group))    # Looks OK> boxplot(split(weight,group))    # Looks OK> boxplot(split(weight,group))    # Looks OK    

> data()> data()> data()> data()    

> PlantGrowth.aov <> PlantGrowth.aov <> PlantGrowth.aov <> PlantGrowth.aov <---- aov(weight~group) aov(weight~group) aov(weight~group) aov(weight~group)    

> summary(PlantGrowth.aov)> summary(PlantGrowth.aov)> summary(PlantGrowth.aov)> summary(PlantGrowth.aov)    

            Df  Sum Sq Mean Sq F value  Pr(>F)            Df  Sum Sq Mean Sq F value  Pr(>F)            Df  Sum Sq Mean Sq F value  Pr(>F)            Df  Sum Sq Mean Sq F value  Pr(>F)    

group        2  3.7663  1.8832  4.8461 0.01591group        2  3.7663  1.8832  4.8461 0.01591group        2  3.7663  1.8832  4.8461 0.01591group        2  3.7663  1.8832  4.8461 0.01591    

Residuals   27 10.4921  0.3886     Residuals   27 10.4921  0.3886     Residuals   27 10.4921  0.3886     Residuals   27 10.4921  0.3886                                                     

> summary.lm(PlantGrowth.aov)> summary.lm(PlantGrowth.aov)> summary.lm(PlantGrowth.aov)> summary.lm(PlantGrowth.aov)    

    

Call:Call:Call:Call:    

aov(formula = weight ~ group)aov(formula = weight ~ group)aov(formula = weight ~ group)aov(formula = weight ~ group)    

    

Residuals:Residuals:Residuals:Residuals:    

    Min      1Q  Median      3Q     Max     Min      1Q  Median      3Q     Max     Min      1Q  Median      3Q     Max     Min      1Q  Median      3Q     Max     

----1.0710 1.0710 1.0710 1.0710 ----0.4180 0.4180 0.4180 0.4180 ----0.0060  0.2627  1.3690 0.0060  0.2627  1.3690 0.0060  0.2627  1.3690 0.0060  0.2627  1.3690     

    

Coefficients:Coefficients:Coefficients:Coefficients:    

            Estimate Std. Error t value Pr(>|t|)            Estimate Std. Error t value Pr(>|t|)            Estimate Std. Error t value Pr(>|t|)            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   5.032(Intercept)   5.032(Intercept)   5.032(Intercept)   5.0320     0.1971  25.527   <2e0     0.1971  25.527   <2e0     0.1971  25.527   <2e0     0.1971  25.527   <2e----16161616    

grouptrt1    grouptrt1    grouptrt1    grouptrt1    ----0.3710     0.2788  0.3710     0.2788  0.3710     0.2788  0.3710     0.2788  ----1.331   0.19441.331   0.19441.331   0.19441.331   0.1944    

grouptrt2     0.4940     0.2788   1.772   0.0877grouptrt2     0.4940     0.2788   1.772   0.0877grouptrt2     0.4940     0.2788   1.772   0.0877grouptrt2     0.4940     0.2788   1.772   0.0877    

    

Residual standard error: 0.6234 on 27 degrees of freedomResidual standard error: 0.6234 on 27 degrees of freedomResidual standard error: 0.6234 on 27 degrees of freedomResidual standard error: 0.6234 on 27 degrees of freedom    

Multiple RMultiple RMultiple RMultiple R----Squared: 0.2641,     Adjusted RSquared: 0.2641,     Adjusted RSquared: 0.2641,     Adjusted RSquared: 0.2641,     Adjusted R----squared: 0.2096 squared: 0.2096 squared: 0.2096 squared: 0.2096     

FFFF----statististatististatististatistic: 4.846 on 2 and 27 degrees of freedom,      pc: 4.846 on 2 and 27 degrees of freedom,      pc: 4.846 on 2 and 27 degrees of freedom,      pc: 4.846 on 2 and 27 degrees of freedom,      p----value: 0.01591 value: 0.01591 value: 0.01591 value: 0.01591     

    

> help(cabbages)> help(cabbages)> help(cabbages)> help(cabbages)    

> data(cabbages)                  # From the MASS library> data(cabbages)                  # From the MASS library> data(cabbages)                  # From the MASS library> data(cabbages)                  # From the MASS library    

> names(cabbages)> names(cabbages)> names(cabbages)> names(cabbages)    

[1] "Cult"   "Date"   "HeadWt" "VitC"  [1] "Cult"   "Date"   "HeadWt" "VitC"  [1] "Cult"   "Date"   "HeadWt" "VitC"  [1] "Cult"   "Date"   "HeadWt" "VitC"      

> coplot(HeadWt~VitC|Cult+Date,data=cabbages)> coplot(HeadWt~VitC|Cult+Date,data=cabbages)> coplot(HeadWt~VitC|Cult+Date,data=cabbages)> coplot(HeadWt~VitC|Cult+Date,data=cabbages)    

Examination of the plot suggests that cultivars differ greatly in the variability in head weight.  Variation in the 
vitamin C levels seems relatively consistent between cultivars. 

> VitC.aov<> VitC.aov<> VitC.aov<> VitC.aov<----aov(VitC~Cult+Date,data=cabbages)aov(VitC~Cult+Date,data=cabbages)aov(VitC~Cult+Date,data=cabbages)aov(VitC~Cult+Date,data=cabbages)    

> summary(VitC.aov)> summary(VitC.aov)> summary(VitC.aov)> summary(VitC.aov)    

            Df  Sum Sq            Df  Sum Sq            Df  Sum Sq            Df  Sum Sq Mean Sq F value    Pr(>F) Mean Sq F value    Pr(>F) Mean Sq F value    Pr(>F) Mean Sq F value    Pr(>F)    

Cult         1 2496.15 2496.15 53.0411 1.179eCult         1 2496.15 2496.15 53.0411 1.179eCult         1 2496.15 2496.15 53.0411 1.179eCult         1 2496.15 2496.15 53.0411 1.179e----09090909    

Date         2  909.30  454.65  9.6609 0.0002486Date         2  909.30  454.65  9.6609 0.0002486Date         2  909.30  454.65  9.6609 0.0002486Date         2  909.30  454.65  9.6609 0.0002486    

Residuals   56 2635.40   47.06                  Residuals   56 2635.40   47.06                  Residuals   56 2635.40   47.06                  Residuals   56 2635.40   47.06                      
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*5.8.2 Shading of Kiwifruit Vines 
These data (yields in kilograms) are in the data frame kiwishadekiwishadekiwishadekiwishade that accompanies these notes. They are from an experiment

32 where there were four treatments - no shading, shading from August to December, shading from 
December to February, and shading from February to May. Each treatment appeared once in each of the three 
blocks.  The northernmost plots were grouped in one block because they were similarly affected by shading from 
the sun.  For the remaining two blocks shelter effects, in one case from the east and in the other case from the 
west, were thought more important.  Results are given for each of the four vines in each plot.  In experimental 
design parlance, the four vines within a plot constitute subplots. 

The block:shadeblock:shadeblock:shadeblock:shade mean square (sum of squares divided by degrees of freedom) provides the error term.  (If 
this is not specified, one still gets a correct analysis of variance breakdown.  But the F-statistics and p-values will 
be wrong.) 

> kiwishade$shade <> kiwishade$shade <> kiwishade$shade <> kiwishade$shade <---- relevel(kiwishade$shade, ref="none") relevel(kiwishade$shade, ref="none") relevel(kiwishade$shade, ref="none") relevel(kiwishade$shade, ref="none")    

> ## Make sure that the level “none” (no shade) is u> ## Make sure that the level “none” (no shade) is u> ## Make sure that the level “none” (no shade) is u> ## Make sure that the level “none” (no shade) is used as referencesed as referencesed as referencesed as reference    

> kiwishade.aov<> kiwishade.aov<> kiwishade.aov<> kiwishade.aov<----aov(yield~block+shade+Error(block:shade),data=kiwishade)aov(yield~block+shade+Error(block:shade),data=kiwishade)aov(yield~block+shade+Error(block:shade),data=kiwishade)aov(yield~block+shade+Error(block:shade),data=kiwishade)    

> summary(kiwishade.aov)> summary(kiwishade.aov)> summary(kiwishade.aov)> summary(kiwishade.aov)    

    

Error: block:shadeError: block:shadeError: block:shadeError: block:shade    

          Df  Sum Sq Mean Sq F value   Pr(>F)          Df  Sum Sq Mean Sq F value   Pr(>F)          Df  Sum Sq Mean Sq F value   Pr(>F)          Df  Sum Sq Mean Sq F value   Pr(>F)    

block      2  172.35   86.17  4.1176 0.074879block      2  172.35   86.17  4.1176 0.074879block      2  172.35   86.17  4.1176 0.074879block      2  172.35   86.17  4.1176 0.074879    

shade      3 1394.51  464.84shade      3 1394.51  464.84shade      3 1394.51  464.84shade      3 1394.51  464.84 22.2112 0.001194 22.2112 0.001194 22.2112 0.001194 22.2112 0.001194    

Residuals  6  125.57   20.93                 Residuals  6  125.57   20.93                 Residuals  6  125.57   20.93                 Residuals  6  125.57   20.93                     

Error: WithinError: WithinError: WithinError: Within    

          Df Sum Sq Mean Sq F value Pr(>F)          Df Sum Sq Mean Sq F value Pr(>F)          Df Sum Sq Mean Sq F value Pr(>F)          Df Sum Sq Mean Sq F value Pr(>F)    

Residuals 36 438.58   12.18Residuals 36 438.58   12.18Residuals 36 438.58   12.18Residuals 36 438.58   12.18    

> coef(kiwishade.aov)> coef(kiwishade.aov)> coef(kiwishade.aov)> coef(kiwishade.aov)    

(Intercept) :(Intercept) :(Intercept) :(Intercept) :    

(Intercept) (Intercept) (Intercept) (Intercept)     

    96.5327     96.5327     96.5327     96.5327     

    

block:shade :block:shade :block:shade :block:shade :    

  blocknorth    blockwest shad  blocknorth    blockwest shad  blocknorth    blockwest shad  blocknorth    blockwest shadeAug2Dec shadeDec2Feb shadeFeb2May eAug2Dec shadeDec2Feb shadeFeb2May eAug2Dec shadeDec2Feb shadeFeb2May eAug2Dec shadeDec2Feb shadeFeb2May     

    0.993125        0.993125        0.993125        0.993125    ----3.430000     3.030833   3.430000     3.030833   3.430000     3.030833   3.430000     3.030833   ----10.281667    10.281667    10.281667    10.281667    ----7.428333 7.428333 7.428333 7.428333     

    

Within :Within :Within :Within :    

numeric(0)numeric(0)numeric(0)numeric(0)    

5.9 Exercises 
1. Here are two sets of data that were obtained the same apparatus, including the same rubber band, as the data 
frame elasticband. For the data set elastic1elastic1elastic1elastic1, the values are:  
     stretchstretchstretchstretch (mm):    46,   54,   48,   50,   44,   42,   52 
     distancedistancedistancedistance (cm): 183, 217, 189, 208, 178, 150, 249.   
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Using a different symbol and/or a different colour, plot the data from the two data frames elastic1elastic1elastic1elastic1 and 
elastic2 elastic2 elastic2 elastic2 on the same graph.  Do the two sets of results appear consistent. 

2. For each of the data sets elastic1elastic1elastic1elastic1 and elastic2elastic2elastic2elastic2, determine the regression of stretch on distance.  In 
each case determine (i) fitted values and standard errors of fitted values and (ii) the R2 statistic.  Compare the 
two sets of results.  What is the key difference between the two sets of data? 

3. Use the method of section 5.7 to determine, formally, whether one needs different regression lines for the two 
data frames elastic1elastic1elastic1elastic1 and elastic2elastic2elastic2elastic2. 

4. Using the data frame carscarscarscars (in the base library), plot distancedistancedistancedistance (i.e. stopping distance) versus speedspeedspeedspeed.  Fit 
-2-1.18072/ to this relatio.18072ship, and plot the2-1.18072/.  The.18072 try fitt1.18072g18072 and plott1.18072g18072 a qu18072adratic cu18072rv18072/.  Does the2qu18072adratic 
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6. Multivariate and Tree-Based Methods 

6.1 Multivariate EDA, and Principal Components Analysis 
Principal components analysis is often a useful exploratory tool for multivariate data.  The idea is to replace the 
initial set of variables by a small number of “principal components” that together may explain most of the 
variation in the data.  The first principal component is the component (linear combination of the initial variables) 
that explains the greatest part of the variation.  The second principal component is the component that, among 
linear combinations of the variables that are uncorrelated with the first principal component, explains the 
greatest part of the remaining variation, and so on. 

The measure of variation used is the sum of the variances of variables, perhaps after scaling the variables so that 
they each have variance one.  An analysis that works with the unscaled variables, and hence with the variance-
covariance matrix, gives a greater weight to variables that have a large variance.  The common alternative –
scaling variables so that they each have variance equal to one – is equivalent to working with the correlation 
matrix.   

With biological measurement data, it is usually desirable to begin by taking logarithms.  The standard deviations 
then measure the logarithm of relative change. Because all variables measure much the same quantity (i.e. 
relative variability), and because the standard deviations are typically fairly comparable, scaling to give equal 
variances is unnecessary.   

The data set possumpossumpossumpossum that accompanies these notes has nine morphometric measurements on each of 102 
mountain brushtail possums, trapped at seven sites from southern Victoria to central Queensland33.  It is good 
practice to begin by examining relevant scatterplot matrices.  This may draw atte.9(a)-1ion to gross errors in the data.  
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are then indicative of different patterns of allometric growth.  The reader may wish to repeat the above analysis, 
but working with the logarithms of measurements. 
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Everitt, B. S. and Dunn, G. 
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> is.na(x)  # TRUE for when NA appears, and otherwise FALSE> is.na(x)  # TRUE for when NA appears, and otherwise FALSE> is.na(x)  # TRUE for when NA appears, and otherwise FALSE> is.na(x)  # TRUE for when NA appears, and otherwise FALSE    
[1] FALSE FALSE FALSE  TRUE[1] FALSE FALSE FALSE  TRUE[1] FALSE FALSE FALSE  TRUE[1] FALSE FALSE FALSE  TRUE    
> x==NA     # All elements are set to NA> x==NA     # All elements are set to NA> x==NA     # All elements are set to NA> x==NA     # All elements are set to NA    
[[[[1] NA NA NA NA1] NA NA NA NA1] NA NA NA NA1] NA NA NA NA    
> NA==NA> NA==NA> NA==NA> NA==NA    
[1] NA[1] NA[1] NA[1] NA    
    

WARNING:
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7.3.1 Extraction of Component Parts of Data frames 

Consider the data frame BarleyBarleyBarleyBarley.   A version is available with the data sets that are supplied to complement 
these notes.  The data set immerimmerimmerimmer that is bundled with the Venables and Ripley MASS
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primates <primates <primates <primates <---- read.table("a:/primates.txt") read.table("a:/primates.txt") read.table("a:/primates.txt") read.table("a:/primates.txt")    

will create the data frame primatesprimatesprimatesprimates, from a file on the a:a:a:a: drive.  The text strings in the first column will 
become the first column in the data frame.  

Suppose that primates is a data frame with three columns – species name, body weight, and brain weight.  You 
can give the columns names by typing in: 

nnnnames(primates)<ames(primates)<ames(primates)<ames(primates)<----c(“Species”,"Bodywt","Brainwt")c(“Species”,"Bodywt","Brainwt")c(“Species”,"Bodywt","Brainwt")c(“Species”,"Bodywt","Brainwt")    

Here then are the contents of the data frame. 
> primates> primates> primates> primates    

        Species Bodywt Brainwt        Species Bodywt Brainwt        Species Bodywt Brainwt        Species Bodywt Brainwt    

1  Potar monkey   10.0     1151  Potar monkey   10.0     1151  Potar monkey   10.0     1151  Potar monkey   10.0     115    

2       Gorilla  207.0     4062       Gorilla  207.0     4062       Gorilla  207.0     4062       Gorilla  207.0     406    

3         Human   62.0    13203         Human   62.0    13203         Human   62.0    13203         Human   62.0    1320    

4 Rhesus monkey    6.8     4 Rhesus monkey    6.8     4 Rhesus monkey    6.8     4 Rhesus monkey    6.8     179179179179    

5         Chimp   52.2     4405         Chimp   52.2     4405         Chimp   52.2     4405         Chimp   52.2     440    

Specify header=TRUEheader=TRUEheader=TRUEheader=TRUE if there is an initial how of header information.  If the number of headers is one less 
than the number of columns of data, then the first column will be used, providing entries are unique, for row 
labels. 

7.4.1 Idiosyncrasies 
The function read.table()read.table()read.table()read.table() is straightforward for reading in rectangular arrays of data that are entirely 
numeric.  When, as in the above example, one of the columns contains text strings, the column is by default 
stored as a factor with as many different levels as there are unique text strings37. 

Problems may arise when small mistakes in the data cause R to interpret a column of supposedly numeric data as 
character strings, which are automatically turned into factors. For example there may be an O (oh) somewhere 
where there should be a 0 (zero), or an el (llll) where there should be a one (1111). If you use any missing value 
symbols other than the default (NANANANA), you need to make this explicit see section 7.3.2 below. Otherwise any 
appearance of such symbols as ****, period(.) and blank (in a case where the separator is something other than a 
space) will cause to whole column to be treated as character data. 

Users who find this default behaviour of read.table() read.table() read.table() read.table() confusing may wish to use the parameter setting 
as.is = TRUEas.is = TRUEas.is = TRUEas.is = TRUE. 38  If the column is later required for use as a factor in a model or graphics formula, it may be 
necessary to make it into a factor at that time.  Some functions do this conversion automatically. 

7.4.2 Missing values when using      read.table()read.table()read.table()read.table() 
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7.5 Factors and Ordered Factors 
We discussed factors in section 2.6.4.  They provide an economical way to store vectors of character strings in 
which there are many multiple occurrences of the same strings.  More crucially, they have a central role in the 
incorporation of qualitative effects into model and graphics formulae. 

Factors have a dual identity.  They are stored as integer vectors, with each of the values interpreted according to 
the information that is in the table of levels40.   

The data frame islandcitiesislandcitiesislandcitiesislandcities that accompanies these notes holds the populations of the 19 island nation 
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7.6 Ordered Factors 
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The second list element is a vector of length 7 
> options(digits=3)> options(digits=3)> options(digits=3)> options(digits=3)    

> > > > elasticelasticelasticelastic.lm$residuals.lm$residuals.lm$residuals.lm$residuals    

      1       2       3       4       5       6       7       1       2       3       4       5       6       7       1       2       3       4       5       6       7       1       2       3       4       5       6       7     

  2.107    2.107    2.107    2.107  ----0.321  18.000   1.893 0.321  18.000   1.893 0.321  18.000   1.893 0.321  18.000   1.893 ----27.786  13.321  27.786  13.321  27.786  13.321  27.786  13.321  ----7.214 7.214 7.214 7.214     

The tenth list element documents the function call: 
> > > > elasticelasticelasticelastic.lm$call.lm$call.lm$call.lm$call    

lm(formula = distance ~ stretch, data = lm(formula = distance ~ stretch, data = lm(formula = distance ~ stretch, data = lm(formula = distance ~ stretch, data = elasticbandelasticbandelasticbandelasticband))))    

> mode(> mode(> mode(> mode(elasticelasticelasticelastic.lm$call).lm$call).lm$call).lm$call)    

[1] "call"[1] "call"[1] "call"[1] "call"    

*7.8 Matrices and Arrays 
In these notes the use of matrices and arrays will be quite limited.  For almost everything we do here, data frames 
have more general relevance, and achieve what we require.  Matrices are likely to be important for those users 
who wish to implement new regression and multivariate methods. 

All the elements of a matrix have the same mode, i.e. all numeric, or all character.  Thus a matrix is a more 
restricted strsctsre than a data frame.  One reason for numeric matrices is that they allow a variety of 
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7.8.1 Arrays 
The generalisation from a matrix (2 dimensions) to allow > 2 dimensions gives an array.  A matrix is a 2-
dimensional array. 

Consider a numeric vector of length 24.  So that we can easily keep track of the elements, we will make them 1, 
2, .., 24.  Thus 

x <x <x <x <---- 1:24 1:24 1:24 1:24    

Then  
dim(x) <dim(x) <dim(x) <dim(x) <---- c(4,6) c(4,6) c(4,6) c(4,6)    

turns this into a 4 x 6 matrix.   
> x> x> x> x    

     [,1] [,2] [,3] [,4] [,5] [,6]      [,1] [,2] [,3] [,4] [,5] [,6]      [,1] [,2] [,3] [,4] [,5] [,6]      [,1] [,2] [,3] [,4] [,5] [,6]     

[1,]    1    5    9   1[1,]    1    5    9   1[1,]    1    5    9   1[1,]    1    5    9   13   17   213   17   213   17   213   17   21    

[2,]    2    6   10   14   18   22[2,]    2    6   10   14   18   22[2,]    2    6   10   14   18   22[2,]    2    6   10   14   18   22    

[3,]    3    7   11   15   19   23[3,]    3    7   11   15   19   23[3,]    3    7   11   15   19   23[3,]    3    7   11   15   19   23    

[4,]    4    8   12   16   20   24[4,]    4    8   12   16   20   24[4,]    4    8   12   16   20   24[4,]    4    8   12   16   20   24    

    

Now try 
> dim(x) <> dim(x) <> dim(x) <> dim(x) <----c(3,4,2)c(3,4,2)c(3,4,2)c(3,4,2)    

> x> x> x> x    

    

, , 1, , 1, , 1, , 1    

     [,1] [,2] [,3] [,4]      [,1] [,2] [,3] [,4]      [,1] [,2] [,3] [,4]      [,1] [,2] [,3] [,4]     

[1,]    1    4    7   10[1,]    1    4    7   10[1,]    1    4    7   10[1,]    1    4    7   10    

[2,]    2    5    8   11[2,]    2    5    8   11[2,]    2    5    8   11[2,]    2    5    8   11    

[3,]    3    6    9   1[3,]    3    6    9   1[3,]    3    6    9   1[3,]    3    6    9   12222    

    

, , 2, , 2, , 2, , 2    

     [,1] [,2] [,3] [,4]      [,1] [,2] [,3] [,4]      [,1] [,2] [,3] [,4]      [,1] [,2] [,3] [,4]     

[1,]   13   16   19   22[1,]   13   16   19   22[1,]   13   16   19   22[1,]   13   16   19   22    

[2,]   14   17   20   23[2,]   14   17   20   23[2,]   14   17   20   23[2,]   14   17   20   23    

[3,]   15   18   21   24[3,]   15   18   21   24[3,]   15   18   21   24[3,]   15   18   21   24    

7.8.2 Conversion of Numeric Data frames into Matrices 
There are various manipulations that are available for matrices, but not for data frames.  Use as.matrix()as.matrix()as.matrix()as.matrix() to 
handle any conversion that may be necessary. 

7.9 Different Types of Attachments 
When R starts up, it has a list of directories where it looks, in order, for objeects.  You can inspect the curr4(h)6.6t list 
by typing in search()search()search()search().  The working directory comes first on the search list. 

You can extend the search list in two ways.  The library()library()library()library() command adds libraries.  Alternatively, or in 
addition, the attach() attach() attach() attach() command places a data frame on the search list.  A data frame is in fact a specialised 

list, with its columns as the objects.  Recall the syntax 
> attach(primates)     # NB: No quotes> attach(primates)     # NB: No quotes> attach(primates)     # NB: No quotes> attach(primates)     # NB: No quotes    

> detach(primates)     # NB: S> detach(primates)     # NB: S> detach(primates)     # NB: S> detach(primates)     # NB: S----PLUS requires detach(“primates”)PLUS requires detach(“primates”)PLUS requires detach(“primates”)PLUS requires detach(“primates”)    

7.10 Exercises 
1. Generate the numbers 101, 102, …, 112, and store the result in the vector xxxx
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3. Generate the sequence consisting of eight 4s, then seven 6s, and finally nine 3s. 

4. Create a vector consisting of one 1, then two 2’s, three 3’s, etc., and ending with nine 9’s. 

5. Determine, for each of the columns of the data frame airqualityairqualityairqualityairquality (base library), the median, mean, upper 
and lower quartiles, and range. 
[Specify data(airquality) data(airquality) data(airquality) data(airquality) to bring the data frame airqualityairqualityairqualityairquality into the working directory.] 

6. For each of the following calculations, decide w0( th)at you would expect, and then check to see if you were right! 

     a) 
answer <answer <answer <answer <---- c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4)    

for (j in 2:length(answer)){ answer[j] <for (j in 2:length(answer)){ answer[j] <for (j in 2:length(answer)){ answer[j] <for (j in 2:length(answer)){ answer[j] <---- max(answer[j],answer[j max(answer[j],answer[j max(answer[j],answer[j max(answer[j],answer[j----1])}1])}1])}1])}    

     b) 
answer <answer <answer <answer <---- c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4) c(2, 7, 1, 5, 12, 3, 4)    

for (j in 2:length(answer)){ answer[jfor (j in 2:length(answer)){ answer[jfor (j in 2:length(answer)){ answer[jfor (j in 2:length(answer)){ answer[j] <] <] <] <---- sum(answer[j],answer[j sum(answer[j],answer[j sum(answer[j],answer[j sum(answer[j],answer[j----1])}1])}1])}1])}    

7. In the built-in data frame airqualityairqualityairqualityairquality (a) extract the row or rows for which OzoneOzoneOzoneOzone has its maximum 
value; and (b) extract the vector of values of  WindWindWindWind for values of OzoneOzoneOzoneOzone that are above the upper quartile. 

8. Refer to the Eurasian snow data that is given in Exercise 1.6 .  Find the mean of the snow cover (a) for the 
odd-numbered years and (b) for the even-numbered years. 

9. Determine which columns of the data frame Cars93Cars93Cars93Cars93 (MASS library) are factors.  For each of these factor 
columns, print out the levels vector.  Which of these are ordered factors? 

10. Use summary()summary()summary()summary() to get information about data in the data frames airqualityairqualityairqualityairquality, attitudeattitudeattitudeattitude (both in the 
base library), and cpuscpuscpuscpus (MASS library).  Write brief notes, for each of these data sets, on what you have 
been able to learn. 

11.  From the data frame mtcarsmtcarsmtcarsmtcars (MASS library) extract a data frame mtcars6mtcars6mtcars6mtcars6 that holds only the 
information for cars with 6 cylinders. 

12.  From the data frame Cars93Cars93Cars93Cars93 (MASS library)  extract a data frame which holds only information for small 
and sporty cars. 

13.  Store the numbers obtained in exercise 2, in order, in the columns of a 3 x 4 matrix. 

14.  Store the numbers obtained in exercise 3, in order, in the columns of a 6 by 4 matrix.  Extract the matrix 
consisting of rows 3 to 6 and columns 3 and 4, of this matrix. 
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81 Useful Functions 

811 Confidence Intervals and Tests 
Use the help to get complete information.  Below, I note two of the simpler functions. 

811.1 The t-test and associated confidence interval 
Use t.test()t.test()t.test()t.test().  This allows both a one-sample and a two-sample test. 

811.2 Chi-Square tests for two-way tables 
Use chisq.test()chisq.test()chisq.test()chisq.test() for a test for no association between rows and columns in the output from table()table()table()table().  
Alternatively, the argument may be a matrix. 

This test that counts enter independently into the cells of a table.  For example, the test is invalid if there is 
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car.brandnames <car.brandnames <car.brandnames <car.brandnames <---- substring(Cars93$Make, 1, nblank substring(Cars93$Make, 1, nblank substring(Cars93$Make, 1, nblank substring(Cars93$Make, 1, nblank----1)1)1)1)    

> car.brandnames[1:5]> car.brandnames[1:5]> car.brandnames[1:5]> car.brandnames[1:5]    

[1] "Acura" "Acura" "Audi"  "Audi"  "BMW"[1] "Acura" "Acura" "Audi"  "Audi"  "BMW"[1] "Acura" "Acura" "Audi"  "Audi"  "BMW"[1] "Acura" "Acura" "Audi"  "Audi"  "BMW"    

To find the position at w[(-1)2hich the first space appears, w[(-1)2e might do the follow[(-1)2ing: 
nblank <nblank <nblank <nblank <---- sapply(Cars93$Make, function(x){n < sapply(Cars93$Make, function(x){n < sapply(Cars93$Make, function(x){n < sapply(Cars93$Make, function(x){n <---- nchar(x);  nchar(x);  nchar(x);  nchar(x);     

      a <      a <      a <      a <---- substring(x, 1:n, 1:n); m < substring(x, 1:n, 1:n); m < substring(x, 1:n, 1:n); m < substring(x, 1:n, 1:n); m <---- match(" ", a,nomatch=1); m}) match(" ", a,nomatch=1); m}) match(" ", a,nomatch=1); m}) match(" ", a,nomatch=1); m})    

8.4 Application of a Function to the Columns of an Array or Data Frame  
apply(<array>, <dimenapply(<array>, <dimenapply(<array>, <dimenapply(<array>, <dimension>, <function>)sion>, <function>)sion>, <function>)sion>, <function>)    

lapply(<list>, <function>) lapply(<list>, <function>) lapply(<list>, <function>) lapply(<list>, <function>)     

               ## N. B. A dataframe is a list.  Output is a list.               ## N. B. A dataframe is a list.  Output is a list.               ## N. B. A dataframe is a list.  Output is a list.               ## N. B. A dataframe is a list.  Output is a list.    

sapply(<list>, <function>)              sapply(<list>, <function>)              sapply(<list>, <function>)              sapply(<list>, <function>)                  

               ## As lapply(), but simplify (e.g. to a vector               ## As lapply(), but simplify (e.g. to a vector               ## As lapply(), but simplify (e.g. to a vector               ## As lapply(), but simplify (e.g. to a vector    

               ## or matrix), if possibl               ## or matrix), if possibl               ## or matrix), if possibl               ## or matrix), if possible.e.e.e.    

8.4.1 apply() 
The function apply() can be used on data frames as well as matrices.  Here is an example: 

> apply(airquality,2,mean)   # All elements must be numeric!> apply(airquality,2,mean)   # All elements must be numeric!> apply(airquality,2,mean)   # All elements must be numeric!> apply(airquality,2,mean)   # All elements must be numeric!    

  Ozone Solar.R    Wind    Temp   Month     Day   Ozone Solar.R    Wind    Temp   Month     Day   Ozone Solar.R    Wind    Temp   Month     Day   Ozone Solar.R    Wind    Temp   Month     Day     

     NA      NA    9.96   77.88    6.99     NA      NA    9.96   77.88    6.99     NA      NA    9.96   77.88    6.99     NA      NA    9.96   77.88    6.99   15.80    15.80    15.80    15.80     

> apply(airquality,2,mean,na.rm=T)> apply(airquality,2,mean,na.rm=T)> apply(airquality,2,mean,na.rm=T)> apply(airquality,2,mean,na.rm=T)    

  Ozone Solar.R    Wind    Temp   Month     Day   Ozone Solar.R    Wind    Temp   Month     Day   Ozone Solar.R    Wind    Temp   Month     Day   Ozone Solar.R    Wind    Temp   Month     Day     

  42.13  185.93    9.96   77.88    6.99   15.80  42.13  185.93    9.96   77.88    6.99   15.80  42.13  185.93    9.96   77.88    6.99   15.80  42.13  185.93    9.96   77.88    6.99   15.80    

The use of apply(airquality,1,mean)apply(airquality,1,mean)apply(airquality,1,mean)apply(airquality,1,mean) will give means for each row.  These are not, for these data, 
useful information! 

8.4.2 sapply() 
The function sapply()sapply()sapply()sapply() can be useful for getting information about the columns of a data frame. Here we use it 
to count that number of missing values in each column of the built-in data frame airqualityairqualityairqualityairquality. 

> sapply(airquality, function(x)su> sapply(airquality, function(x)su> sapply(airquality, function(x)su> sapply(airquality, function(x)sum(is.na(x)))m(is.na(x)))m(is.na(x)))m(is.na(x)))    

  Ozone Solar.R    Wind    Temp   Month     Day   Ozone Solar.R    Wind    Temp   Month     Day   Ozone Solar.R    Wind    Temp   Month     Day   Ozone Solar.R    Wind    Temp   Month     Day     

     37       7       0       0       0       0     37       7       0       0       0       0     37       7       0       0       0       0     37       7       0       0       0       0    

Here are several further examples that use the data frame mothsmothsmothsmoths that accompanies these notes: 
> sapply(moths,is.factor)> sapply(moths,is.factor)> sapply(moths,is.factor)> sapply(moths,is.factor)        # Determine which columns# Determine which columns# Determine which columns# Determine which columns are factors are factors are factors are factors    

 meters       A       P habitat  meters       A       P habitat  meters       A       P habitat  meters       A       P habitat     

  FALSE   FALSE   FALSE    TRUE  FALSE   FALSE   FALSE    TRUE  FALSE   FALSE   FALSE    TRUE  FALSE   FALSE   FALSE    TRUE    

> # How many levels does each factor have?> # How many levels does each factor have?> # How many levels does each factor have?> # How many levels does each factor have?    

> sapply(moths, function(x)if(!is.factor(x))return(0) else length(levels(x)))> sapply(moths, function(x)if(!is.factor(x))return(0) else length(levels(x)))> sapply(moths, function(x)if(!is.factor(x))return(0) else length(levels(x)))> sapply(moths, function(x)if(!is.factor(x))return(0) else length(levels(x)))    

 meters       A       P habitat  meters       A       P habitat  meters       A       P habitat  meters       A       P habitat     

      0       0       0       0       0       0       0       0       0       0       0       0       8       8       8       8     

*8.5 tapply() 
The arguments are a variable, a list of factors, and a function that operates on a vector to return a single value.  
For each combination of factor levels, the function is applied to corresponding values of the variable.  The 
output is an array with as many dimensions as there are factors.  Where there are no data values for a particular 
combination of factor levels, NANANANA is returned. 

Often one wishes to get back, not an array, but a data frame with one row for each combination of factor levels.  
For example, we may have a data frame with two factors and a numeric variable, and want to create a new data 
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frame with all possible combinations of the factors, and the cell means as the response.  Here is an example of 
how to do it.   

First, use tapply()tapply()tapply()tapply() to produce an array of cell means.  The function dimnames()dimnames()dimnames()dimnames(), applied to this array, 
returns a list whose first element holds the row names (i.e. for the level names for the first factor), and whose 
second element holds the column names.  [Further dimensions are possible.]  We pass this list (row names, 
column names) to expand.grid()expand.grid()expand.grid()expand.grid(), which returns a data frame with all possible combinations of the factor 
levels.  Finally, stretch the array of means out into a vector, and append this to the data frame.  Here is an 
example using the data set cabbagescabbagescabbagescabbages from the MASS library. 

> data(cabbages)> data(cabbages)> data(cabbages)> data(cabbages)    

> names(cabbages)> names(cabbages)> names(cabbages)> names(cabbages)    

[1] "Cult"   "Date"   "HeadWt" "VitC"  [1] "Cult"   "Date"   "HeadWt" "VitC"  [1] "Cult"   "Date"   "HeadWt" "VitC"  [1] "Cult"   "Date"   "HeadWt" "VitC"      

> sapply(cabbages, levels)> sapply(cabbages, levels)> sapply(cabbages, levels)> sapply(cabbages, levels)    

$Cult$Cult$Cult$Cult    

[1] "c39" "c52"[1] "c39" "c52"[1] "c39" "c52"[1] "c39" "c52"    

    

$Date$Date$Date$Date    

[1] "d16" "d20" "d21"[1] "d16" "d20" "d21"[1] "d16" "d20" "d21"[1] "d16" "d20" "d21"    

    

$HeadWt$HeadWt$HeadWt$HeadWt    

NULLNULLNULLNULL    
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If there are no data for some combinations of factor levels, one might want to omit the corresponding rows. 

8.6 Splitting Vectors and Data Frames Down into Lists – split() 
As an example,  

split(cabbages$Hesplit(cabbages$Hesplit(cabbages$Hesplit(cabbages$HeadWt, cabbages$Date)adWt, cabbages$Date)adWt, cabbages$Date)adWt, cabbages$Date)    

returns a list with three elements, the first named “d16” and containing values of He267 He267 He267 He267  where DateDateDateDate has the 
level d16d16d16d16, and similarly for the remaining lists with names “d20” and “d21”.  You need to use split()split()split()split() in this 
way in order to do side by side boxplots.  The function boxplot()boxplot()boxplot()boxplot() takes as its first element a list in which the 
first list element is the vector of values for the first boxplot, the second list element is the vector of values for the 
second boxplot, and so on. 

You can use split to split up a data frame into a list of data frames.  For example 
split(cabbages[,split(cabbages[,split(cabbages[,split(cabbages[,----1], cabbages$Date)  # Split remaining columns1], cabbages$Date)  # Split remaining columns1], cabbages$Date)  # Split remaining columns1], cabbages$Date)  # Split remaining columns    

                          # by levels of Date      # by levels of Date      # by levels of Date      # by levels of Date    

*8.7 Merging Data Frames 
The data frame Cars93Cars93Cars93Cars93 (mass library) holds extensive information on data from 93 cars on sale in the USA in 
1993.  One of the variables, stored as a factor, is TypeTypeTypeType.  I have created a data frame Cars93.summaryCars93.summaryCars93.summaryCars93.summary, in 
which the row names are the distinct values of Type, while a later column holds two character abbreviations of 
each of the car types, suitable for use in plotting.  

> Cars93.summary> Cars93.summary> Cars93.summary> Cars93.summary    

        Min.passengers Max.passengers No.of.cars abbrev        Min.passengers Max.passengers No.of.cars abbrev        Min.passengers Max.passengers No.of.cars abbrev        Min.passengers Max.passengers No.of.cars abbrev    

Compact              4              6         16      CCompact              4              6         16      CCompact              4              6         16      CCompact              4              6         16      C    

Large                6              6   Large                6              6   Large                6              6   Large                6              6         11      L      11      L      11      L      11      L    

Midsize              4              6         22      MMidsize              4              6         22      MMidsize              4              6         22      MMidsize              4              6         22      M    

Small                4              5         21     SmSmall                4              5         21     SmSmall                4              5         21     SmSmall                4              5         21     Sm    

Sporty               2              4         14     SpSporty               2              4         14     SpSporty               2              4         14     SpSporty               2              4         14     Sp    

Van                  7              8          9      VVan                  7              8          9      VVan                  7              8          9      VVan                  7              8          9      V    
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> as.date("31/12/60","dmy")> as.date("31/12/60","dmy")> as.date("31/12/60","dmy")> as.date("31/12/60","dmy")----as.date("1/1/60","dmy")as.date("1/1/60","dmy")as.date("1/1/60","dmy")as.date("1/1/60","dmy")    

[1] 365[1] 365[1] 365[1] 365    

> as.integer(as.date("1/1/60","dmy"))> as.integer(as.date("1/1/60","dmy"))> as.integer(as.date("1/1/60","dmy"))> as.integer(as.date("1/1/60","dmy"))    

[1] 0[1] 0[1] 0[1] 0    

    

> as.integer(as.date("1/1/2000","dmy"))> as.integer(as.date("1/1/2000","dmy"))> as.integer(as.date("1/1/2000","dmy"))> as.integer(as.date("1/1/2000","dmy"))    

[1] 14610[1] 14610[1] 14610[1] 14610    

>>>> as.integer(as.date("29/2/2000","dmy")) as.integer(as.date("29/2/2000","dmy")) as.integer(as.date("29/2/2000","dmy")) as.integer(as.date("29/2/2000","dmy"))    

[1] 14669[1] 14669[1] 14669[1] 14669    

> as.integer(as.date("1/3/2000","dmy"))> as.integer(as.date("1/3/2000","dmy"))> as.integer(as.date("1/3/2000","dmy"))> as.integer(as.date("1/3/2000","dmy"))    

[1] 14670[1] 14670[1] 14670[1] 14670    

A wide variety of different formats are possible.  Among the legal formats are 8-31-2000 (or 31-8-2000 if you 
specify order=”dmy”order=”dmy”order=”dmy”order=”dmy”), 8/31/2000 (cf 31/8/2000), or August 31 2000. 

Observe that one can subtract two dates and get the time between them in days.   There are several functions 
(including date.ddmmmyy()date.ddmmmyy()date.ddmmmyy()date.ddmmmyy()) for printing out dates in various different formats. 

8.9 Exercises 
1. For the data frame Cars93Cars93Cars93Cars93, get the information provided by summary() summary() summary() summary() for each level of TypeTypeTypeType.  

(Use split() split() split() split().) 

2. Determine the number of cars, in the data frame Cars93Cars93Cars93Cars93
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9. Writing Functions and other Code 

We have already met several functions.  Here is a function to convert Fahrenheit to Celsius: 
> fahrenheit2celsius <> fahrenheit2celsius <> fahrenheit2celsius <> fahrenheit2celsius <---- function(fahrenheit=32:40)(fahrenheit function(fahrenheit=32:40)(fahrenheit function(fahrenheit=32:40)(fahrenheit function(fahrenheit=32:40)(fahrenheit----32)*5/932)*5/932)*5/932)*5/9    

> # Now invoke the function> # Now invoke the function> # Now invoke the function> # Now invoke the function    

> fahrenheit2celsius(c(40,50,60))> fahrenheit2celsius(c(40,50,60))> fahrenheit2celsius(c(40,50,60))> fahrenheit2celsius(c(40,50,60))    

[1]  4.444444 10.000000 15.555556[1]  4.444444 10.000000 15.555556[1]  4.444444 10.000000 15.555556[1]  4.444444 10.000000 15.555556    

The function returns the value (fahrenheit(fahrenheit(fahrenheit(fahrenheit----32)*5/932)*5/932)*5/932)*5/9.  More generally, a function returns the value of the 
last statement of the function.  Unless the result from the function is assigned to a name, the result is printed. 

Here is a function that prints out the mean and standard deviation of a set of numbers: 

> mean.and.sd <> mean.and.sd <> mean.and.sd <> mean.and.sd <---- function(x=1:10){ function(x=1:10){ function(x=1:10){ function(x=1:10){    

+ av <+ av <+ av <+ av <---- mean(x) mean(x) mean(x) mean(x)    

+ sd <+ sd <+ sd <+ sd <---- sqrt(var(x)) sqrt(var(x)) sqrt(var(x)) sqrt(var(x))    

+ c(mean=av, SD=sd)+ c(mean=av, SD=sd)+ c(mean=av, SD=sd)+ c(mean=av, SD=sd)    

+ }+ }+ }+ }    

>>>>    

> # Now invoke the function> # Now invoke the function> # Now invoke the function> # Now invoke the function    

> mean.and.sd()> mean.and.sd()> mean.and.sd()> mean.and.sd()    

    mean       SD     mean       SD     mean       SD     mean       SD     

5.500000 5.500000 5.500000 5.500000 3.027650 3.027650 3.027650 3.027650     

    

> mean.and.sd(hills$climb)> mean.and.sd(hills$climb)> mean.and.sd(hills$climb)> mean.and.sd(hills$climb)    

    mean       SD     mean       SD     mean       SD     mean       SD     

1815.314 1619.151 1815.314 1619.151 1815.314 1619.151 1815.314 1619.151     

9.1 Syntax and Semantics 
A function is created using an assignment.  On the right hand side, the parameters appear within round brackets.  
You can, if you wish, give a default.  In the example above  the default was x = 1:10, so that users can run the 
function without specifying a parameter, just to see what it does. 

Following the closing “)” the function body appears.  Except where the function body consists of just one 
statement, this is enclosed between curly braces ({ }).  The return value usually appears on the final line of the 
function body.  In the example above, this was the vector consisting of the two named elements mean and sd. 

9.1.1 A Function that gives Data Frame Details 
First we will define a function that accepts a vector xxxx as its only argument.  It will allow us to determine whether 
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Finally, we may want to do similar calculations on a number of different data frames.  So we create a function 
check.df()check.df()check.df()check.df() that encapsulates the calculations.  Here is the definition of check.df()check.df()check.df()check.df(). 

check.df <check.df <check.df <check.df <---- function(df=moths)  function(df=moths)  function(df=moths)  function(df=moths)     

            sapply(df, function(x)if(!is.factor(x))return(0) else             sapply(df, function(x)if(!is.factor(x))return(0) else             sapply(df, function(x)if(!is.factor(x))return(0) else             sapply(df, function(x)if(!is.factor(x))return(0) else     

                                                                                                   length(levels(x)))                                   length(levels(x)))                                   length(levels(x)))                                   length(levels(x)))    

9.1.2 Compare Working Directory Data Sets with a Reference Set 
At the beginning of a new session, we might store the names of the objects in the working directory in the vector 
dsetnamesdsetnamesdsetnamesdsetnames, thus: 

dsetnamedsetnamedsetnamedsetnames <s <s <s <---- objects() objects() objects() objects()    

Now suppose that we have a function additions()additions()additions()additions(), defined thus: 
additions <additions <additions <additions <---- function(objnames = dsetnames) function(objnames = dsetnames) function(objnames = dsetnames) function(objnames = dsetnames)    

{{{{    

        newnames <        newnames <        newnames <        newnames <---- objects(pos=1) objects(pos=1) objects(pos=1) objects(pos=1)    

        existing <        existing <        existing <        existing <---- as.logical(match(newnames, objnames, nomatch = 0)) as.logical(match(newnames, objnames, nomatch = 0)) as.logical(match(newnames, objnames, nomatch = 0)) as.logical(match(newnames, objnames, nomatch = 0))    

        newnames[!existing        newnames[!existing        newnames[!existing        newnames[!existing]]]]    

}    

At some later point in the session, we can enter 
additions(dsetnames)additions(dsetnames)additions(dsetnames)additions(dsetnames)    

to get the names of objects that have been added since the start of the session. 

9.2 Issues for the Writing and Use of Functions 
There can be many functions.  Choose their names carefully, so that they are meaningful. 

Choose meaningful names for arguments, even if this means that they are longer than one would like.  
Remember that they can be abbreviated in actual use. 

As far as possible, make code self-documenting.  Use meaningful names for R objects.  Ensure that the names 
used reflect the hierarchies of files, data structures and code. 

R allows the use of names for elements of vectors and lists, and for rows and columns of arrays and dataframes.  
Consider the use of names rather than numbers when you pull out individual elements, columns etc.  Thus 
dead.tot[,”dead”]dead.tot[,”dead”]dead.tot[,”dead”]dead.tot[,”dead”] is more meaningful and safer than dead.tot[,2]dead.tot[,2]dead.tot[,2]dead.tot[,2]. 

Settings that may need to change in later use of the function should appear as default settings for parameters.  
Use lists, where this seems appropriate, to group together parameters that belong together conceptually. 

Where appropriate, provide a demonstration mode for functions.  Such a mode will print out summary 
information on the data and/or on the results of manipulations prior to analysis, with appropriate labelling.  The 
code needed to implement this feature has the side-effect of showing by example what the function does, and 
may be useful for debugging. 

Break functions up into a small number of sub-functions or “primitives”.  Re-use existing functions wherever 
possible.  Write any new “primitives” so that they can be re-used.  This helps ensure that functions contain well-
tested and well-understood components.  Watch the r-help electronic mail list (section 13.3) for useful functions 
for routine tasks. 

Wherever possible, give parameters sensible defaults.  Often a good strategy is to use as defaults parameters that 
will serve for a demonstration run of the function.   

NULL is a useful default where the parameter mostly is not required, but where the parameter if it appears may 
be any one of several types of data structure.  The test if(!is.null())if(!is.null())if(!is.null())if(!is.null()) then determines whether one needs 
to investig.2( t)4..4(e n)8..2( t)4..4(e n)8..2( t)4..0241 lrest)1.6(v)98.3(f)8e tasks. 
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9.3 Functions as aids to Data Management 
Where data, labelling etc must be pulled together from a number of sources, and especially where you may want 
to retrace your steps some months later, take the same care over structuring data as over structuring code.  Thus 
if there is a factorial structure to the data files, choose file names that reflect it.  You can then generate the file 
names automatically, using paste()paste()paste()paste() to glue the separate portions of the name together. 

Lists are a useful mechanism for grouping together all data and labelling information that one may wish to bring 
together in a single set of computations.  Use as the name of the list a unique and meaningful identification code.  
Consider whether you should include objects as list items, or whether identification by name is preferable.  Bear 
in mind, also, the use of switch()switch()switch()switch(), with the identification code used to determine what switch()switch()switch()switch() should 
pick out, to pull out specific information and data that is required for a particular run. 

Concentrate in one function the task of pulling together data and labelling information, perhaps with some 
subsequent manipulation, from a number of separate files.  This structures the code, and makes the function a 
source of documentation for the data. 

Use user-defined data frame attributes to document your data.  For example, given the data frame elasticelasticelasticelastic 
containing the amount of stretch and resulting distance of movement of a rubber band, one might specify 

attributes(elasticband)$title <attributes(elasticband)$title <attributes(elasticband)$title <attributes(elasticband)$title <----        
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We pursue the Poisson distribution in an exercise below. 
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15. Write a function that does an arbitrary number nnnn of repeated simulations of the number of accidents in a 
year, plotting the result in a suitable way.  Assume that the number of accidents in a year follows a Poisson 
distribution.  Run the function assuming an average rate of 2.8 accidents per year. 

16. Write a function that simulates the repeated calculation of the coefficient of variation (= the ratio of the mean 
to the standard deviation), for independent random samples from a normal distribution. 

17. Write a function that, for any sample, calculates the median of the absolute values of the deviations from the 
sample median.  

*18. Generate random samples from normal, exponential, t (2 d. f.), and t (1 d. f.), thus: 

a) xn<xn<xn<xn<----rnorm(100)rnorm(100)rnorm(100)rnorm(100) 

b) xe<xe<xe<xe<----rexp(100)rexp(100)rexp(100)rexp(100) 

c) xt2<xt2<xt2<xt2<----rt(100, df=2)rt(100, df=2)rt(100, df=2)rt(100, df=2)    

d) xt2<xt2<xt2<xt2<----rt(100, df=1rt(100, df=1rt(100, df=1rt(100, df=1) 

Apply the function from exercise 17 to each sample.  Compare with the standard deviation in each case.  

*19. The vector xxxx consists of the frequencies 
        5, 3, 1, 4, 65, 3, 1, 4, 65, 3, 1, 4, 65, 3, 1, 4, 6    
The first element is the number of occurrences of level 1, the second is the number of occurrences of level 2, and 
so on.  Write a function that takes any such vector x as its input, and outputs the vector of factor levels, here 1 1 1 1 1 1 1 1 
1 1 1 2 2 2 3 . . .1 1 1 2 2 2 3 . . .1 1 1 2 2 2 3 . . .1 1 1 2 2 2 3 . . .  
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*10. GLM, and General Non-linear Models 

GLM models are Generalized Linear Models. They extend the multiple regression model.  The GAM 
(Generalized Additive Model) model is a further extension. 

10.1 A Taxonomy of Extensions to the Linear Model 
R allows a variety of extensions to the multiple linear regression model.  In this chapter we describe the 
alternative functional forms. 

The basic model formulation41 is: 

 Observed value = Model Prediction + Statistical Error 
Often it is assumed that the statistical error values (values of ε in the discussion below) are independently and 
identically distributed as Normal.  Generalized Linear Models, and the other extensions we describe, allow a 
variety of non-normal distributions.  In the discussion of this section, our focus is on the form of the model 
prediction, and we leave until later sections the discussion of different possibilities for the “error” distribution. 

Multiple regression model 

 y = 
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Additive models are a generalization of lmlmlmlm models.  In 1 dimension 

 εφ += )( 11 xy  

Some of )(),...,(),( 222111 ppp xzxzxz φφφ ===  may be smoothing functions, while others may be 

the usual linear model terms.  The constant term gets absorbed into one or more of the φ  s. 

Generalized Additive Model 

εφφφ ++++= ))(....)()(( 2211 pp xxxgy  

Generalized Additive Models are a generalisation of Generalized Linear Models.  For example, g(.) may be the 
function that undoes the logit transformation, as in a logistic regression model. 

Some of )(),...,(),( 222111 ppp g
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0.00.20.40.60.81.0 -6 -4 -20 2 4 6Proportion logit(Proportion), i. e. log(Odds) 0.0010.10.750.99 F i g u r e  2 4 :   T h e  l o g i t  o r  l o g ( o d d s )  t r a n s f o r m a t i o n .   S h o w n  h e r e   i s  a  p l o t  o f  l o g ( o d d s )  v e r s u s  p r o p o r t i o n .  N o t i c e  h o w  t h e  r a n g e  i s   s t r e t c h e d  o u t  a t  b o t h  e n d s .  

 T h e  l o g i t  o r  l o g ( o d d s )  f u n c t i o n  t u r n s  e x p e c t e d  p r o p o r t i o n s  i n t o  v a l u e s  t h a t  m a y  r a n g e  f r o m  -

•  t o  + • .   I t  i s  n o t  

s a t i s f a c t o r y  t o  u s e  a  l i n e a r  m o d e l  t o  p r e d i c t  p r o p o r t i o n s .   T h e  v a l u e s  f r o m  t h e  l i n e a r  m o d e l  m a y  w e l l  l i e  o u t s i d e  

t h e  r a n g e  f r o m  0  t o  1 .   I t  i s  h o w e v e r  i n  o r d e r  t o  u s e  a  l i n e a r  m o d e l  t o  p r e d i c t  l o g i t ( p r o p o r t i o n ) .   T h e  l o g i t  
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Table 1: Patients moving (0) and not moving (1), for each of 
six different alveolar concentrations. 

 

Fig. 25 then displays a plot of these proportions. 
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Figure 25: Plot, versus concentration, of proportion of patients  
not moving. The horizontal line is the estimate of the proportion  
of moves one would expect if the concentration had no effect. 

 

We fit two models, the logit model and the complementary log-log model.  We can fit the models either directly 
to the 0/1 data, or to the proportions in Table 1.  To understand the output, you need to know about “deviances”.  
A deviance has a role ve.9( r)-y simila.9( r)- to a sum of squa.9( r)-es in .9( r)-eg.9( r)-ession.  Thus we have: 
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> summary(anaes.logit)> summary(anaes.logit)> summary(anaes.logit)> summary(anaes.logit)    

    

Call: glm(formula = nomove ~ conc, family = binomial(link = logit), Call: glm(formula = nomove ~ conc, family = binomial(link = logit), Call: glm(formula = nomove ~ conc, family = binomial(link = logit), Call: glm(formula = nomove ~ conc, family = binomial(link = logit),     

         data = anesthetic)         data = anesthetic)         data = anesthetic)         data = anesthetic)    

Deviance Residuals:Deviance Residuals:Deviance Residuals:Deviance Residuals:    

   Min     1Q Median    3Q  Max    Min     1Q Median    3Q  Max    Min     1Q Median    3Q  Max    Min     1Q Median    3Q  Max     

    ----1.77 1.77 1.77 1.77 ----0.744 0.0341 0.687 2.070.744 0.0341 0.687 2.070.744 0.0341 0.687 2.070.744 0.0341 0.687 2.07    

    

Coefficients:Coefficients:Coefficients:Coefficients:    

            Value St            Value St            Value St            Value Std. Error t value d. Error t value d. Error t value d. Error t value     

(Intercept) (Intercept) (Intercept) (Intercept) ----6.47       2.42   6.47       2.42   6.47       2.42   6.47       2.42   ----2.682.682.682.68    

       conc  5.57       2.04    2.72       conc  5.57       2.04    2.72       conc  5.57       2.04    2.72       conc  5.57       2.04    2.72    

    

(Dispersion Parameter for Binomial family taken to be 1 )(Dispersion Parameter for Binomial family taken to be 1 )(Dispersion Parameter for Binomial family taken to be 1 )(Dispersion Parameter for Binomial family taken to be 1 )    

    

    Null Deviance: 41.5 on 29 degrees of freedom    Null Deviance: 41.5 on 29 degrees of freedom    Null Deviance: 41.5 on 29 degrees of freedom    Null Deviance: 41.5 on 29 degrees of freedom    

Residual Deviance: 27.8 on 28 degrees of freedomResidual Deviance: 27.8 on 28 degrees of freedomResidual Deviance: 27.8 on 28 degrees of freedomResidual Deviance: 27.8 on 28 degrees of freedom    

NumberNumberNumberNumber of Fisher Scoring Iterations: 5  of Fisher Scoring Iterations: 5  of Fisher Scoring Iterations: 5  of Fisher Scoring Iterations: 5     

    

Correlation of Coefficients:Correlation of Coefficients:Correlation of Coefficients:Correlation of Coefficients:    

     (Intercept)      (Intercept)      (Intercept)      (Intercept)     

conc conc conc conc ----0.9810.9810.9810.981    

 

Fig. 26 is a graphical summary of the results: 

Concentration

Pr
op

or
tio

n

0.0 0.5 1.0 1.5 2.0 2.5

0.
01

0.
1

0.
4

0.
8

0.
99

 
Figure 26: Plot, versus concentration, of log(odds) [= logit(proportion)]  
of patients not moving. The line is the estimate of the proportion of   
moves, based on the fitted logit model. 
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10.3 glm models (Generalized Linear Regression Modelling) 
In the above we had 

anaes.logit <anaes.logit <anaes.logit <anaes.logit <- --- glm(nomove ~ conc, family = binomial(link = logit), glm(nomove ~ conc, family = binomial(link = logit), glm(nomove ~ conc, family = binomial(link = logit), glm(nomove ~ conc, family = binomial(link = logit),    
                   data=anesthetic)                   data=anesthetic)                   data=anesthetic)                   data=anesthetic)    

The familyfamilyfamilyfamily  parameter specifies the distribution for the dependent variable.  There is an optional argument that 
allows us to specify the link function.  Below we give further examples.   

10.3.2 Data in the form of counts 
Data that are in the form of counts can often be analysed quite effectively assuming the poissonpoissonpoissonpoisson family.  The 
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methods(summary)methods(summary)methods(summary)methods(summary)    
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*11. Multi-level Models, Time Series and Survival Analysis 

Repeated measures models are a special case of multi-level models. 

11.1 Multi-Level Models, Including Repeated Measures Models 
Models have both a fixed effects structure and an error structure. For example, in an inter-laboratory comparison 
there may be variation between laboratories, between observers within laboratories, and between multiple 
determinations made by the same observer on different samples.  If we treat laboratories and observers as 
random, the only fixed effect is the mean. 

The functions lme()lme()lme()lme() and nlme()nlme()nlme()nlme(), from the Pinheiro and Bates library, handle models in which a repeated 
measures error structure is superimposed on a linear (lmelmelmelme) or non-linear (nlmenlmenlmenlme) model.  Version 3 of lme is 
broadly comparable to Proc Mixed in the widely used SAS statistical package.  The function lmelmelmelme has associated 
with it highly useful abilities for diagnostic checking and for various insightful plots. 

There is a strong link between a wide class of repeated measures models and time series models.  In the time 
series context there is usually just one realisation of the series, which may however be observed at a large 
number of time points.  In the repeated measures context there may be a large number of realisations of a series 
that is typically quite short. 

11.1.1 The Kiwifruit Shading Data, Again 
Refer back to section 5.8.2 for details of these data.  The fixed effects are blockblockblockblock and treatment (shadeshadeshadeshade).  The 
random effects are blockblockblockblock (though making block a random effect is optional), plotplotplotplot within blockblockblockblock, and units 
within each block/plot combination.  Here is the analysis: 

> library(nlme)> library(nlme)> library(nlme)> library(nlme)    

Loading required package: nls Loading required package: nls Loading required package: nls Loading required package: nls     

> kiwishade$plot<> kiwishade$plot<> kiwishade$plot<> kiwishade$plot<----factor(paste(kiwishade$block, kiwishade$shade, factor(paste(kiwishade$block, kiwishade$shade, factor(paste(kiwishade$block, kiwishade$shade, factor(paste(kiwishade$block, kiwishade$shade,     

    sep="."))    sep="."))    sep="."))    sep="."))    

> kiwishade.lme<> kiwishade.lme<> kiwishade.lme<> kiwishade.lme<-
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             (Intr) shdA2D shdD2F             (Intr) shdA2D shdD2F             (Intr) shdA2D shdD2F             (Intr) shdA2D shdD2F    

shadeAug2Dec shadeAug2Dec shadeAug2Dec shadeAug2Dec ----0.53               0.53               0.53               0.53                   

shadeDec2Feb shadeDec2Feb shadeDec2Feb shadeDec2Feb ----0.53   0.50        0.53   0.50        0.53   0.50        0.53   0.50            

shadeFeb2May shadeFeb2May shadeFeb2May shadeFeb2May ----0.53   0.50   0.50 0.53   0.50   0.50 0.53   0.50   0.50 0.53   0.50   0.50     

    

Standardized WithinStandardized WithinStandardized WithinStandardized Within----Group Residuals:Group Residuals:Group Residuals:Group Residuals:    

                Min         Q1        Med         Q3        Max     Min         Q1        Med         Q3        Max     Min         Q1        Med         Q3        Max     Min         Q1        Med         Q3        Max     

----2.4153887 2.4153887 2.4153887 2.4153887 ----0.5981415 0.5981415 0.5981415 0.5981415 ----0.0689948  0.7804597  1.5890938 0.0689948  0.7804597  1.5890938 0.0689948  0.7804597  1.5890938 0.0689948  0.7804597  1.5890938     

    

Number of Observations: 48Number of Observations: 48Number of Observations: 48Number of Observations: 48    

Number of Groups: Number of Groups: Number of Groups: Number of Groups:     

          block plot %in% block           block plot %in% block           block plot %in% block           block plot %in% block     

              3              12              3              12              3              12              3              12    

> anova(kiwishade.lme)> anova(kiwishade.lme)> anova(kiwishade.lme)> anova(kiwishade.lme)    

                                                numDF denDF  FnumDF denDF  FnumDF denDF  FnumDF denDF  F----value pvalue pvalue pvalue p----valuevaluevaluevalue    

(Intercept)     1    36 5190.552  <.0001(Intercept)     1    36 5190.552  <.0001(Intercept)     1    36 5190.552  <.0001(Intercept)     1    36 5190.552  <.0001    

shade           3     6   22.211  0.0012shade           3     6   22.211  0.0012shade           3     6   22.211  0.0012shade           3     6   22.211  0.0012    

This was a balanced design, which is why section 5.8.2 could use aov()aov()aov()aov()  for an analysis.  We can get an output 
summary that is helpful for showing how the error mean squares match up with standard deviation information 
given above thus: 

> intervals(kiwishade.lme)> intervals(kiwishade.lme)> intervals(kiwishade.lme)> intervals(kiwishade.lme)    

Approximate 95% confidence intervalsApproximate 95% confidence intervalsApproximate 95% confidence intervals

   

    

 Fixed effects: Fixed effects: Fixed effects: Fixed effects:    

                 lower       est.      upper                 lower       est.      upper                 lower       est.      upper                 lower       est.      upper    

(Intercept)   96.62977 100.202500 103.(Intercept)   96.62977 100.202500 103.(Intercept)   96.62977 100.202500 103.(Intercept)   96.62977 100.202500 103.775232775232775232775232    

shadeAug2Dec  shadeAug2Dec  shadeAug2Dec  shadeAug2Dec  ----1.53909   3.030833   7.6007571.53909   3.030833   7.6007571.53909   3.030833   7.6007571.53909   3.030833   7.600757    

shadeDec2Feb shadeDec2Feb shadeDec2Feb shadeDec2Feb ----14.85159 14.85159 14.85159 14.85159 ----10.281667  10.281667  10.281667  10.281667  ----5.7117435.7117435.7117435.711743    

shadeFeb2May shadeFeb2May shadeFeb2May shadeFeb2May ----11.99826  11.99826  11.99826  11.99826  ----7.428333  7.428333  7.428333  7.428333  ----2.8584102.8584102.8584102.858410    

    

 Random Effects: Random Effects: Random Effects: Random Effects:    

  Level: block   Level: block   Level: block   Level: block     

                    lower     est.   upper                    lower     est.   upper                    lower     est.   upper                    lower     est.   upper    

sd((Intercept)) 0.5473014 2.019373 7.sd((Intercept)) 0.5473014 2.019373 7.sd((Intercept)) 0.5473014 2.019373 7.sd((Intercept)) 0.5473014 2.019373 7.45086450864508645086    

  Level: plot   Level: plot   Level: plot   Level: plot     

                    lower     est.    upper                    lower     est.    upper                    lower     est.    upper                    lower     est.    upper    

sd((Intercept)) 0.3702555 1.478639 5.905037sd((Intercept)) 0.3702555 1.478639 5.905037sd((Intercept)) 0.3702555 1.478639 5.905037sd((Intercept)) 0.3702555 1.478639 5.905037    

    

 Within Within Within Within----group standard error:group standard error:group standard error:group standard error:    

   lower     est.    upper    lower     est.    upper    lower     est.    upper    lower     est.    upper     

2.770678 3.490378 4.397024 2.770678 3.490378 4.397024 2..770678 3.490378 4.397024 
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The above allows us to put together the information for an analysis of variance table.  We have: 

 Variance 
component 

Mean square for anova table d.f. 

block  4.076 12.180 + 4 × 2.186 + 16 × 4.076  

= 86.14 

 2  

(3-1) 

plot  2.186 12.180 + 4 × 2.186  

= 20.92 

 6 

(3-1) ×(2-1) 

residual (within group) 12.180 12.18 3×4×(4-1) 

 

Now find see where these same pieces of information appeared in the analysis of variance table of section 5.8.2: 
> kiwishade.aov<> kiwishade.aov<> kiwishade.aov<> kiwishade.aov<----aov(yield~block+shade+Error(block:shade),data=kiaov(yield~block+shade+Error(block:shade),data=kiaov(yield~block+shade+Error(block:shade),data=kiaov(yield~block+shade+Error(block:shade),data=kiwishade)wishade)wishade)wishade)    

> summary(kiwishade.aov)> summary(kiwishade.aov)> summary(kiwishade.aov)> summary(kiwishade.aov)    

    

Error: block:shadeError: block:shadeError: block:shadeError: block:shade    

          Df  Sum Sq Mean Sq F value   Pr(>F)          Df  Sum Sq Mean Sq F value   Pr(>F)          Df  Sum Sq Mean Sq F value   Pr(>F)          Df  Sum Sq Mean Sq F value   Pr(>F)    

block      2  172.35   86.17  4.1176 0.074879block      2  172.35   86.17  4.1176 0.074879block      2  172.35   86.17  4.1176 0.074879block      2  172.35   86.17  4.1176 0.074879    

shade      3 1394.51  464.84 22.2112 0.001194shade      3 1394.51  464.84 22.2112 0.001194shade      3 1394.51  464.84 22.2112 0.001194shade      3 1394.51  464.84 22.2112 0.001194    

Residuals  6  125.57   20.93                 Residuals  6  125.57   20.93                 Residuals  6  125.57   20.93                 Residuals  6  125.57   20.93                     

    

Error: WithinError: WithinError: WithinError: Within    

                   Df Sum Sq Mean Sq F value Pr(>F)       Df Sum Sq Mean Sq F value Pr(>F)       Df Sum Sq Mean Sq F value Pr(>F)       Df Sum Sq Mean Sq F value Pr(>F)    

Residuals 36 438.58   12.18Residuals 36 438.58   12.18Residuals 36 438.58   12.18Residuals 36 438.58   12.18    

11.1.2 The Tinting of Car Windows 
In section 4.1 we encountered    data from an experiment that aimed to model the effects of the tinting of car 
windows on visual performance44.  The authors are mainly interested in effects on side window vision, and 
hence in visual recognition tasks that would be performed when looking through side windows. 

Data are in the data frame tintingtintingtintingtinting.  In this data frame, csoacsoacsoacsoa (critical stimulus onset asynchrony, i.e. the time 
in milliseconds required to recognise an alphanumeric target), itititit (inspection time, i.e. the time required for a 
simple discrimination task) and  ageageageage are variables, while tinttinttinttint (3 levels) and targettargettargettarget (2 levels) are ordered 
factors.  The variable sexsexsexsex is coded 1 for males and 2 for females, while the variable agegpagegpagegpagegp is coded 1 for 
young people (all in their early 20s) and 2 for older participants (all in the early 70s). 

We have two levels of variation – within individuals (who were each tested on each combination of  tinttinttinttint and 
targettargettargettarget), and between individuals.  So we need to specify idididid (identifying the individual) as a random effect.  
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Finally, there is the very simple model, allowing only for main effects: 
it1.lme<it1.lme<it1.lme<it1.lme<----lme(log(it)~(tint+target+agegp+sex),lme(log(it)~(tint+target+agegp+sex),lme(log(it)~(tint+target+agegp+sex),lme(log(it)~(tint+target+agegp+sex),    

  random=~1|id, data=tinting,method="ML")  random=~1|id, data=tinting,method="ML")  random=~1|id, data=tinting,method="ML")  random=~1|id, data=tinting,method="ML")    

 

Note that we have fitted all these models by maximum likelihood.  This is so that we can do the equivalent of an 
analysis of variance comparison.  Here is what we get: 

> anova(itstar.lme,it2.lme,it1.lme)> anova(itstar.lme,it2.lme,it1.lme)> anova(itstar.lme,it2.lme,it1.lme)> anova(itstar.lme,it2.lme,it1.lme)    

           Model df       AIC      BIC    logLik   Test  L.Ratio p           Model df       AIC      BIC    logLik   Test  L.Ratio p           Model df       AIC      BIC    logLik   Test  L.Ratio p           Model df       AIC      BIC    logLik   Test  L.Ratio p----valuevaluevaluevalue    

itstar.lme     1 26  8.146187 91.45036 21.926906                        itstar.lme     1 26  8.146187 91.45036 21.926906                        itstar.lme     1 26  8.146187 91.45036 21.926906                        itstar.lme     1 26  8.146187 91.45036 21.926906                            

it2.lme        2 17 it2.lme        2 17 it2.lme        2 17 it2.lme        2 17 ----3.742883 50.72523 18.871441 1 vs 2  6.11093  0.3.742883 50.72523 18.871441 1 vs 2  6.11093  0.3.742883 50.72523 18.871441 1 vs 2  6.11093  0.3.742883 50.72523 18.871441 1 vs 2  6.11093  0.7288728872887288    

it1.lme        3  8  1.138171 26.77022  7.430915 2 vs 3 22.88105  0.0065it1.lme        3  8  1.138171 26.77022  7.430915 2 vs 3 22.88105  0.0065it1.lme        3  8  1.138171 26.77022  7.430915 2 vs 3 22.88105  0.0065it1.lme        3  8  1.138171 26.77022  7.430915 2 vs 3 22.88105  0.0065    

 

The model that limits attention to first order interactions is adequate.  We will need to examine the first order 
interactions individually.  For this we re-fit the model used for it2.lmeit2.lmeit2.lmeit2.lme, but now with method="REML"method="REML"method="REML"method="REML". 

it2.reml<it2.reml<it2.reml<it2.reml<----update(it2.lme,method="REML")update(it2.lme,method="REML")update(it2.lme,method="REML")update(it2.lme,method="REML")    

 

We now examine the estimated effects: 
> options(digits=3)> options(digits=3)> options(digits=3)> options(digits=3)    

> summary(it2.reml)$tTable> summary(it2.reml)$tTable> summary(it2.reml)$tTable> summary(it2.reml)$tTable    

                      Value Std.Error  DF t                      Value Std.Error  DF t                      Value Std.Error  DF t                      Value Std.Error  DF t----value  pvalue  pvalue  pvalue  p----valuevaluevaluevalue    

(Intercept)         6.05231    (Intercept)         6.05231    (Intercept)         6.05231    (Intercept)         6.05231    0.7589 145   7.975 4.17e0.7589 145   7.975 4.17e0.7589 145   7.975 4.17e0.7589 145   7.975 4.17e----13131313    

tint.L              0.22658    0.0890 145   2.547 1.19etint.L              0.22658    0.0890 145   2.547 1.19etint.L              0.22658    0.0890 145   2.547 1.19etint.L              0.22658    0.0890 145   2.547 1.19e----02020202    

tint.Q              0.17126    0.0933 145   1.836 6.84etint.Q              0.17126    0.0933 145   1.836 6.84etint.Q              0.17126    0.0933 145   1.836 6.84etint.Q              0.17126    0.0933 145   1.836 6.84e----02020202    

targethicon        targethicon        targethicon        targethicon        ----0.24012    0.1010 145  0.24012    0.1010 145  0.24012    0.1010 145  0.24012    0.1010 145  ----2.378 1.87e2.378 1.87e2.378 1.87e2.378 1.87e----02020202    

agegp              agegp              agegp              agegp              ----1.13449    0.5167  22  1.13449    0.5167  22  1.13449    0.5167  22  1.13449    0.5167  22  ----2.196 32.196 32.196 32.196 3.90e.90e.90e.90e----02020202    

sex                sex                sex                sex                ----0.74542    0.5167  22  0.74542    0.5167  22  0.74542    0.5167  22  0.74542    0.5167  22  ----1.443 1.63e1.443 1.63e1.443 1.63e1.443 1.63e----01010101    

tint.L.targethicon tint.L.targethicon tint.L.targethicon tint.L.targethicon -0.83193    0.0461 145  0.83193    0.0461 145  0.83193    0.0461 145  ----1.996 4.78e1.996 4.78e1.996 4.78e1.996 4.78e----02020202    

tint.Q.targethicon tint.Q.targethicon tint.Q.targethicon tint.Q.targethicon -0.80722    0.0482 145  0.80722    0.0482 145  0.80722    0.0482 145  ----0.150 8.81e0.150 8.81e0.150 8.81e0.150 8.81e----01010101    

tint.L.agegp       tint.L.agegp       tint.L.agegp       tint.L.agegp       ----0.13075    0.0492 145  0.13075    0.0492 145  0.13075    0.0492 145  0.13075    0.0492 145  ----2.658 8.74e2.658 8.74e2.658 8.74e2.658 8.74e----03030303    

tint.Q.agegptint.Q.agegptint.Q.agegptint.Q.agegp                            -0.86972    0.0520 145  0.86972    0.0520 145  0.86972    0.0520 145  ----1.341 1.82e1.341 1.82e1.341 1.82e1.341 1.82e----01010101    

tint.L.sex          0.09794    0.0492 145   1.991 4.83etint.L.sex          0.09794    0.0492 145   1.991 4.83etint.L.sex          0.09794    0.0492 145   1.991 4.83etint.L.sex          0.09794    0.0492 145   1.991 4.83e----02020202    

tint.Q.sex         tint.Q.sex         tint.Q.sex         tint.Q.sex         ----0.00542    0.0520 145  0.80542    0.0520 145  0.80542    0.0520 145  0.80542    0.0520 145  ----0.104 9.17e0.104 9.17e0.104 9.17e0.104 9.17e----01010101    

targethicon.agegp   0.13887    0.0584 145   2.376 1.88etargethicon.agegp   0.13887    0.0584 145   2.376 1.88etargethicon.agegp   0.13887    0.0584 145   2.376 1.88etargethicon.agegp   0.13887    0.0584 145   2.376 1.88e----02020202    

targethicon.sex    targethicon.sex    targethicon.sex    targethicon.sex    ----0.07785    00.87785    00.87785    00.87785    0.0584 145  .0584 145  .0584 145  .0584 145  ----1.332 1.85e1.332 1.85e1.332 1.85e1.332 1.85e----01010101    

agegp.sex           0.33164    0.3261  22   1.017 3.20eagegp.sex           0.33164    0.3261  22   1.017 3.20eagegp.sex           0.33164    0.3261  22   1.017 3.20eagegp.sex           0.33164    0.3261  22   1.017 3.20e----01010101    

 

Because tinttinttinttint is an ordered factor, polynomial contrasts are used. 

11.1.3  The Michelson Speed of Light Data  
Here is an example, using the Michelson speed of light data from the Venables and Ripley MASS library.  The 
model allows the determination to vary linearly with RunRunRunRun (from 1 to 20), with the slope varying randomly 
between the five experiments of 20 runs each. We assume an autoregressive dependence structure of order 1.  
We allow the variance to change from one experiment to another.  Maximum likelihood tests suggest that one 
needs at least this complexity in the variance and dependence structure to reprtsent the data accurately. A model 
that has neither fixed nor random RunRunRunRun effects seems all that is justified statistically.  To test this, one needs to fit 
models with and without these effects, setting method=”ML”method=”ML”method=”ML”method=”ML” in each case, and compare the likelihoods.  (I 
leave this as an exercise!)  For purposes of doing this test, a first order autoregressive model would probably be 
adequate.  A model that ignorts the sequential dependence entirely dots give misleading rtsults. 
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> library(mass)  # if needed> library(mass)  # if needed> library(mass)  # if needed> library(mass)  # if needed    

> data(michelson)  # if needed> data(michelson)  # if needed> data(michelson)  # if needed> data(michelson)  # if needed    
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There are (at least) two types of method – time domain methods and frequency domain methods.  In the time 
domain models may be conventional “short memory” models where the autocorrelation function decays quite 
rapidly to zero,  or the relatively recently developed “long memory” time series models where the 
autocorrelation function decays very slowoy as observations move apart in time.  A characteristic of “long 
memory” models is that there is variation at all temporal scales.  Thus in a study of wind speeds it may be 
possible to characterise windy days, windy weeks, windy months, windy years, windy decades, and perhaps even 
windy centuries. R does not yet have functions for fitting the more recently developed long memory models. 
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*12. Advanced Programming Topics 

12.1. Methods 
R is an object-oriented language.  Objects may have a “class”.  For functions such as print()print()print()print(), summary()summary()summary()summary(), 
etc., the class of the object determines what action will be taken. Thus in response to print(x)print(x)print(x)print(x), R determines 
the class attribute of xxxx, if one exists.  If for example the class attribute is “factor”, then the function which finally 
handles the printing is print.factor()print.factor()print.factor()print.factor().  The function print.default()print.default()print.default()print.default() is used to print objects that 
have not been assigned a class. 

More generally, the class attribute of an object may be a vector of strings.  If there are “ancestor” classes – 
parent, grandparent, . . ., these are specified in order in subsequent elements of the class vector.  For example, 
ordered factors have the class “ordered”, which inherits from the class “factor”.  Thus: 

> fac<> fac<> fac<> fac<----ordered(1:3)ordered(1:3)ordered(1:3)ordered(1:3)    

> class(fac)> class(fac)> class(fac)> class(fac)    

[1] "ordered" "factor" [1] "ordered" "factor" [1] "ordered" "factor" [1] "ordered" "factor"     

Here facfacfacfac has the class “ordered”, which inherits from the parent class “factor”. 

The function print.ordered()print.ordered()print.ordered()print.ordered(), which is the function that is called when you invoke print()print()print()print() with an 
ordered factor, makes use of the fact that “ordered” inherits from “factor”. 

> > > > print.orderedprint.orderedprint.orderedprint.ordered    

function (x, quote = FALSE) function (x, quote = FALSE) function (x, quote = FALSE) function (x, quote = FALSE)     

{{{{    

    if (length(x) <= 0)     if (length(x) <= 0)     if (length(x) <= 0)     if (length(x) <= 0)     

        cat("ordered(0)        cat("ordered(0)        cat("ordered(0)        cat("ordered(0)\\\\n")n")n")n")    

    else print(levels(x)[x], quote = quote)    else print(levels(x)[x], quote = quote)    else print(levels(x)[x], quote = quote)    else print(levels(x)[x], quote = quote)    

    cat("Levels: ", paste(levels(x), collapse = " < "), "    cat("Levels: ", paste(levels(x), collapse = " < "), "    cat("Levels: ", paste(levels(x), collapse = " < "), "    cat("Levels: ", paste(levels(x), collapse = " < "), "\\\\n")n")n")n")    

    invisible(x)    invisible(x)    invisible(x)    invisible(x)    

}}}}    

Note that it is a convenience for print.ordered()print.ordered()print.ordered()print.ordered() to call print.factor()print.factor()print.factor()print.factor(). The function 
print.glm()print.glm()print.glm()print.glm() does not call print.lm()print.lm()print.lm()print.lm(), even though glm objects inherit from lm objects. 

12.2 Extracting Arguments to Functions  
How, inside a function, can one extract the value assigned to a parameter when the function was called?  Below 
there is a function extract.arg()extract.arg()extract.arg()extract.arg().  When it is called as extract.arg(a=xx)extract.arg(a=xx)extract.arg(a=xx)extract.arg(a=xx), we want it to return 
“xx”“xx”“xx”“xx”. When it is called as extract.arg(a=xy)extract.arg(a=xy)extract.arg(a=xy)extract.arg(a=xy), we want it to return “xy”“xy”“xy”“xy”.  Here is how it is done. 

extract.arg <extract.arg <extract.arg <extract.arg <----    

function (a)function (a)function (a)function (a)    

{{{{    

    s <s <s <s <---- substitute(a) substitute(a) substitute(a) substitute(a)    

    as.character(s)as.character(s)as.character(s)as.character(s)    

}}}}    

 
> extract.arg(a=xy)> extract.arg(a=xy)> extract.arg(a=xy)> extract.arg(a=xy)    

[1] “xy”[1] “xy”[1] “xy”[1] “xy”    

If the argument is a function, we may want to get at the arguments to the function.  Here is how one can do it 
deparse.args <deparse.args <deparse.args <deparse.args <----    

function (a)function (a)function (a)function (a)    

{{{{    

    s <s <s <s <---- substitute (a) substitute (a) substitute (a) substitute (a)    
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    if(mode(s) == "call"){if(mode(s) == "call"){if(mode(s) == "call"){if(mode(s) == "call"){    
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We store the expression in my.exp2my.exp2my.exp2my.exp2, and then evaluate it 
> my.exp2 <> my.exp2 <> my.exp2 <> my.exp2 <-
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xnaxnaxnaxname <me <me <me <---- all.vars(expr) all.vars(expr) all.vars(expr)
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13. R Resources  

13.1 R Packages for Windows 
To get information on R packages (libraries), go to: 

http://cran.rhttp://cran.rhttp://cran.rhttp://cran.r----project.orgproject.orgproject.orgproject.org    

The Australian link (accessible only to users in Australia) is: 
http://mirror.aarnet.edu.au/pub/CRAN/http://mirror.aarnet.edu.au/pub/CRAN/http://mirror.aarnet.edu.au/pub/CRAN/http://mirror.aarnet.edu.au/pub/CRAN/    

For Windows 95 etc binaries,  look in 
http://mirror.aarnet.edu.au/pub/CRAN/windows/windowshttp://mirror.aarnet.edu.au/pub/CRAN/windows/windowshttp://mirror.aarnet.edu.au/pub/CRAN/windows/windowshttp://mirror.aarnet.edu.au/pub/CRAN/windows/windows----9x/9x/9x/9x/    

Look in the directory contrib for libraries.  
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`Complements’ has extensive information on new libraries that have come from third party sources.  

Venables, W.N. and Ripley, B.D. 2000.  S Programming.  Springer 2000.  This is a terse and careful 
introduction to the dialects of the S language, including R. 

R Development Core Team 1999. An Introduction to R. 
This document is available from the CRAN sites noted in section 13.1. 

13.3 The R-help electronic mail discussion list 
Details of the r-help list, and of other lists that serve the R community, are available from the web site: 

http://www.Rhttp://www.Rhttp://www.Rhttp://www.R----project.org/ project.org/ project.org/ project.org/     

13.4 Competing Systems – XLISP-STAT 
XLISP-STAT is a lisp-based system that, like S-PLUS and R, allows a seamless extensibility.  It is available 
from 

http://www.stat.umn.edhttp://www.stat.umn.edhttp://www.stat.umn.edhttp://www.stat.umn.edu/~luke/xls/xlsinfo/xlsinfo.htmlu/~luke/xls/xlsinfo/xlsinfo.htmlu/~luke/xls/xlsinfo/xlsinfo.htmlu/~luke/xls/xlsinfo/xlsinfo.html    

See also the code designed to accompany Cook and Woisberg’s book “Applied Regression Including Computing 
and Graphics” (Wiley 1999), available from 

http://www.stat.umn.edu/archttp://www.stat.umn.edu/archttp://www.stat.umn.edu/archttp://www.stat.umn.edu/arc
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14. Appendix 1 

14.1 Data Sets Referred to in these Notes 

Data sets accompanying these notes 
Barley Cars93.summary ais anesthetic austpop 
dewpoint dolphins elasticband florida hills 
huron islandcities kiwishade leafshape milk 
moths oddbooks orings possum primates 
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