Note: The etude problem sets has 7 questions, for a total of 165 points. You should read/review your class notes first and then set yourself sometime to work on these problems. You may also treat it as a practice final. However, there are less problems in the real final exam (for 90 min exam time). For this etude problem sets, the working time is around 120 min . Remind you the NENC principle for my exam: explain your answer and write down necessary details of your calculation. No explanation/details $=$ No credits. Good Luck!

1. True or False? In the following questions, determine whether the statement is true or false. Give an example if the statement is true; otherwise, give a counterexample.
(a) If $E\left(X_{i}\right), \operatorname{Var}\left(X_{i}\right)<\infty, i=1,2$ and X_{1}, X_{2} are independent. Then $\operatorname{Var}\left(3 X_{1}-2 X_{2}+3\right)=9 \operatorname{Var}\left(X_{1}\right)+4 E\left(X_{2}\right)$
(b) If X, Y are independent random variable with finite expectations and variances then $\operatorname{Cov}(X, Y)=0$.
(c) Let X, Y be two random variables with marginal pdf f_{X}, f_{Y} respectively. Then their joint pdf $f(x, y)=f_{X}(x) f_{Y}(y)$ for all x, y.
(d) If X, Y are independent then $E(X / Y)=E(X) / E(Y)$ if all these expectations exist.
2. Let X_{1}, \cdots, X_{n} be iid random variables from $N\left(\mu, \sigma^{2}\right)$
(a) Show that $\left(X_{1}-\mu\right) / \sigma$ is a standard normal random variable, i.e. $N(0,1)$.
(b) Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Show that $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$.
3. Let X, Y have the joint pdf

$$
f(x)= \begin{cases}c(1+x+y) & \text { if } 0<x<1 \text { and } 0<y<1 \tag{10}\\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine c such that f defines a (joint) pdf
(b) Compute $E\left(X^{2}+X Y-Y\right)$
(c) Are X, Y independent? Are they uncorrelated?
4. Let X, Y have the joint pmf

$$
f(x)= \begin{cases}c x y & \text { if } x=1,2 \text { and } y=1,2 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine c such that f defines a joint pmf
(b) Compute $E\left(X^{2}+X Y-Y\right)$
(c) Are X, Y independent? Are they uncorrelated?
5. Let X be a random variable with mgf

$$
M_{X}(t)=\frac{1}{4}\left(e^{-t}+2+e^{t}\right)
$$

(a) Compute $E\left(2019 X^{2019}+2018 X^{2018}\right)$.
(10) (b) Let $Y=3 X-1$. Compute $M_{Y}(t)$, the mgf of Y.
6. Let $X_{1}, \cdots, X_{n} \sim_{i i d} N(2,4)$.
(a) Derive the joint pdf of $\left(X_{1}, X_{2}\right)$. Recall if $X \sim N\left(\mu, \sigma^{2}\right)$ the the pdf of X is

$$
\begin{equation*}
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \quad \forall x \in(-\infty, \infty) . \tag{10}
\end{equation*}
$$

(10) (b) What is (the distribution of) $\sum_{k=1}^{n}\left(\frac{X_{k}-2}{2}\right)$?
(5) 7. Estimate the points you will get for the exam (excluding this problem).

