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Outline

© KNN, LS and more

@ Introduction of Linear Methods

© Linear Regression Models and LS

@ Regression by Successive Orthogonalization: §3.3
@ Variable Selection

Reference: §2.4-2.9, Chapter 3 of HTF's ESL
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KNN, LS and more

E(Y|X) linear in Xi,---, X,

@ Both KNN and LS can be viewed as E(Y|x) (in some sense)
which minimizes the expected (squared) prediction error
EPE(f) = Ey x(Y — f(X))? = ExEyx[(Y — f(X))?|X]

e What if loss is chosen as Li, L(y,f(x)) = |y — f(x)]|, instead
of the Ly loss (y — f(x))??

@ f(x) = median(Y|x) more robust but lesser convenient

@ Discrete Y? Or #) is finite?
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KNN, LS and more

Bayes classifier for Discrete Scenario

e WLOG, assume Y = {1,-, K}
EPE(G) = Ey xL(Y,G(X)), X,Y ~ PYX

= ExEyxL(Y,G(X EXZL(k G(X))P(Y = k|X)

o Minimize pointwise ~ G(x) = arg min,cy EyL(Y, G(x)).
(Bayes classifier)

o When L(y, G(x)) = 1[y+6(x), 0-1 loss,
G(x) = arg minyey[l — P(y|X = x)] = arg max,ey P(y|X =
x).

@ Bayes classifier

o Good: Achieve the optimal error rate (Bayes error rate).

o Bad: the conditional Py, usually unknown and can lead to
unreasonable estimator in cases.
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KNN, LS and more

Ways to improve KNN, LSE

Estimation of E(Y'|x) through KNN or regression can fail

@ Curse of dimensionality: KNN includes points afar leads to
large error

o If special structure is known, further reduction in bias and
variance is possible.

Prediction Problem: Emphasis on " Y" rather than " X"
e Statistical Model: Assumption on Py x (or €), say
Y =Ff(X)+e

@ Supervised learning
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KNN, LS and more

Functional approximation

@ Functional approximation
o regression: f(x) =x'3,8 € RP
o linear basis expansions: fy(x) =3, hi(x)bxk
o {hk(x)}« forms a basis for the feasible/approximate space F
where the target f is located /approximated.
o Examples: x?, x;x2,cos(x3). Polynomials, trig functions. Also
he(x) = Trap=—m)
@ Residual Sum of Squares (RSS)
RSS(0) = >°"_; (i — fo(xi))?. Projection.
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Introduction of Linear Methods

E(Y|X) linear in Xi,---, X,

@ Simple: easier computation, interpretation and communication

@ Readily generalizable: transformation on Y and X,
combination of X's’

@ Conceptual Framework for more general methods, for
example, nonlinear problems.
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Linear Regression Models and LS

Definition

(Yi, xi)P_y with x; = (xi1, Xj2, -+, Xip)’
° Y,-zﬁo—kzj’?:lx,jﬁj—ke,-,i:l,--- ,n.
o ¢ id with E(¢;) = 0 and Cov(e;, €;) = o2 if i = j; 0 otherwise.
o (Typically) €; ~jig N(0,0?).
Alternatively,
o Systematic component: E(Y|X) = o + > 7_; X;5;
e Random component: ¢; id with E(¢;) = 0 and
Cov(ei, ¢j) = o2 if i = j; 0 otherwise.
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Linear Regression Models and LS

How flexible is LR?

Assume €; ~iig N(0,0?)
o Yi= [P0+ SiXi+e€
o Y= [0+ B1X1iXoi + €
o sin(Y;) = exp(Bo + f1Xi) + €

C. Andy Tsao SML Week 2-3



Linear Regression Models and LS

How flexible is LR?

Assume ¢; ~iig N(0,c2)

o Yi=/[o+ f1Xi+ e

o Y= [0+ B1X1iXoi + €

o sin(Y;) = exp(Bo + B1Xi) + €
Your turn
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Linear Regression Models and LS

How flexible is LR?

Assume ¢; ~iig N(0,c2)
o Yi=/[o+ f1Xi+ e
o Yi=[fo+ f1XeiXoi + €
e sin(Y;) = exp(Bo + S1Xi) + €

Your turn
@ quantitative inputs, X
e transformation of quantitative inputs, sin(X), log(X), vV X
e powers, Xo = X2, X3 = X3
e interactions: X3 = X2X,.
e For GLM (general linear model), qualitative inputs, say

Lix>20]-
Remark: Linear in parameters (/3) not in X.
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Linear Regression Models and LS

Estimation of LR

Y=X0+¢
e Solve B st Q(B) = ||Y — XB||? is minimized
e Normal equation: f3 solves X*(Y — X3) = 0.
e When XX is nonsingular, 3 = (XtX)"1XtY.
o Geometric Interpretation: Y = X(X'X)~1X'Y is the
projection of Y onto the column space of the design matrix X.
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Linear Regression Models and LS

Inference: HT and ClI

o B~ N(B,(XtX) 1o?)
o o2 =Y = Y|?/(n—p-1).
e (n—p— l)UA2 ~ U2X%7P71.

@ Gauss-Markov Theorem: For any estimable parameter
6 = atf3, at3 is BLUE provided GM condition holds.
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Regression by Successive Orthogonalization: §3.3

Simple Linear Regression

e Y; = x;8 + ¢ (No intercept)
o Y =XB+¢ewhere X = (x1, - ,xp)*
o B=(X"X)IXTY = X,
ri=Yyi — XxiP.
@ In inner product with < X,y >= Do XiYi

5 <xy>
ﬁ:<§:§>’ r=Y-Xg.
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Regression by Successive Orthogonalization: §3.3

Multiple Linear Regression w/ orthogonal x's

@ Y =XB+¢ewhere X = (X, -+, X,)*
° /3 — (th)—lxty — 21 xii

it

=Yy — Xip.
I\._ <)<J’y> . ~
0/8_]_<)(j’)(j>7 r—y—XB.

@ When inputs are orthogonal, they have no effect on each
other parameter estimates in the model.
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Regression by Successive Orthogonalization: §3.3

Succession Orthogonalization w/ general x’s

Orthogonality occurs in balanced, designed experiment but not in
general
@ Initialize zp = xg =1

@ Forj=1,2,---,p

Regres<s Xj ;)n 20,271, ,Zj—1 to get
A <LZ,Xj . .
Vi = <z/’zJ/>7/_Oa]-a"' 71_1

j—1

Zj =X = X k—o TijZk-
@ Regress y on the residual z, to get ﬂAp.
Gram-Schmidt procedure for multiple regression
@ Zz's are orthogonal to each other.
@ lterative projection of Y onto z's
o 3= (h, ,BAP)’ is a LSE.
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Regression by Successive Orthogonalization: §3.3

Succession Orthogonalization: Recap

o [3; represents the additional contribution of X; on Y, after X;
has been adjusted by Xp, X1,---, Xj_1.

o Y = XA is the projection of Y onto column space of X
@ Non-unique B. Unique 14
@ Alternative iteration for 3: lterative residual fitting.

Exercise 1: Write down the algorithm for iterative residual fitting
and show that the obtained /5 also solves the normal equation.
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Variable Selection

Unsatisfying LSE

Y| X1, -+, Xq, q large/huge
° AccuracX
Even if 3 = (XtX)~1X!Y exists, it may have large variance.
@ Interpretation
Non-uniqueness

@ Scientific Important X might be missing

@ Variable selection
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Variable Selection

Subset Selection

Y| X1, -+, Xq, q large/huge. Want to pick p(<< gq) X's out of
them.

@ What have we learned before?
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Variable Selection

Subset Selection

Y| X1, -+, Xq, q large/huge. Want to pick p(<< gq) X's out of
them.

@ What have we learned before?

o Accuracy VErsus parsimoniousness
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Variable Selection

Subset Selection

Y| X1, -+, Xq, q large/huge. Want to pick p(<< gq) X's out of
them.
@ What have we learned before?
@ Accuracy versus parsimoniousness
@ Mission impossible: High accuracy, few indep variables
@ Criterion-based approach: Razdj, AIC, etc
@ Important First
@ Simple versus Complex terms
o

Use auto procedure only when necessary. Screening rather
than determing.
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Variable Selection

Shrinking Methods

Bridge — argming {(Y — XB)'(Y — XB) + AB8}

@ What does this mean? Alternatives?

@ (Ex 2) It can be shown

Bridge — (XX + A)7IXTY.
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