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E (Y |X ) linear in X1, · · · ,Xp

Both KNN and LS can be viewed as E (Y |x) (in some sense)
which minimizes the expected (squared) prediction error
EPE (f ) = EY ,X (Y − f (X ))2 = EXEY |X [(Y − f (X ))2|X ]

What if loss is chosen as L1, L(y , f (x)) = |y − f (x)|, instead
of the L2 loss (y − f (x))2?

1 f̂ (x) = median(Y |x) more robust but lesser convenient

Discrete Y ? Or #Y is finite?
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Bayes classifier for Discrete Scenario

WLOG, assume Y = {1, ·,K}

EPE (G ) = EY ,XL(Y ,G (X )), X ,Y ∼ PY ,X

= EXEY |XL(Y ,G (X )) = EX

K∑
k=1

L(k,G (X ))P(Y = k |X )

Minimize pointwise  Ĝ (x) = arg miny∈Y EY |xL(Y ,G (x)).
(Bayes classifier)
When L(y ,G (x)) = 1[y 6=G(x)], 0-1 loss,

Ĝ (x) = arg miny∈Y [1− P(y |X = x)] = arg maxy∈Y P(y |X =
x).

Bayes classifier
Good: Achieve the optimal error rate (Bayes error rate).
Bad: the conditional PY |x usually unknown and can lead to
unreasonable estimator in cases.
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Ways to improve KNN, LSE

Estimation of E (Y |x) through KNN or regression can fail

Curse of dimensionality: KNN includes points afar leads to
large error

If special structure is known, further reduction in bias and
variance is possible.

Prediction Problem: Emphasis on ”Y ” rather than ”X”

Statistical Model: Assumption on PY ,X (or ε), say
Y = f (X ) + ε

Supervised learning

C. Andy Tsao SML Week 2-3



KNN, LS and more
Introduction of Linear Methods

Linear Regression Models and LS
Regression by Successive Orthogonalization: §3.3

Variable Selection

Functional approximation

Functional approximation

regression: f (x) = x ′β, β ∈ Rp

linear basis expansions: fθ(x) =
∑

k hk(x)θk
{hk(x)}k forms a basis for the feasible/approximate space F
where the target f is located/approximated.
Examples: x21 , x1x2, cos(x3). Polynomials, trig functions. Also
hk(x) = 1

1+exp(−x′β)

Residual Sum of Squares (RSS)
RSS(θ) =

∑n
i=1(yi − fθ(xi ))2. Projection.
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E (Y |X ) linear in X1, · · · ,Xp

Simple: easier computation, interpretation and communication

Readily generalizable: transformation on Y and X ,
combination of X ’s’

Conceptual Framework for more general methods, for
example, nonlinear problems.
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Definition

(Yi , xi )
n
i=1 with xi = (xi1, xi2, · · · , xip)′

Yi = β0 +
∑p

j=1 xijβj + εi , i = 1, · · · , n.
εi id with E (εi ) = 0 and Cov(εi , εj) = σ2 if i = j ; 0 otherwise.

(Typically) εi ∼iid N(0, σ2).

Alternatively,

Systematic component: E (Y |X ) = β0 +
∑p

j=1 Xjβj

Random component: εi id with E (εi ) = 0 and
Cov(εi , εj) = σ2 if i = j ; 0 otherwise.
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How flexible is LR?

Assume εi ∼iid N(0, σ2)

Yi = β0 + β1Xi + εi

Yi = β0 + β1X1iX2i + εi

sin(Yi ) = exp(β0 + β1Xi ) + εi

Your turn

quantitative inputs, X

transformation of quantitative inputs, sin(X ), log(X ),
√
X

powers, X2 = X 2,X3 = X 3

interactions: X3 = X 2
1X2.

For GLM (general linear model), qualitative inputs, say
1[X>20].

Remark: Linear in parameters (β) not in X .
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Estimation of LR

Y = Xβ + ε

Solve β st Q(β) = ||Y − Xβ||2 is minimized

Normal equation: β solves X t(Y − Xβ) = 0.

When X tX is nonsingular, β̂ = (X tX )−1X tY .

Geometric Interpretation: Ŷ = X (X tX )−1X tY is the
projection of Y onto the column space of the design matrix X .
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Inference: HT and CI

β̂ ∼ N(β, (X tX )−1σ2)

σ̂2 = ||Y − Ŷ ||2/(n − p − 1).

(n − p − 1)σ̂2 ∼ σ2χ2
n−p−1.

Gauss-Markov Theorem: For any estimable parameter
θ = atβ, at β̂ is BLUE provided GM condition holds.
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Simple Linear Regression

Yi = xiβ + εi (No intercept)

Y = Xβ + ε where X = (x1, · · · , xn)t

β̂ = (X tX )−1X tY =
∑n

1 xiyi∑
i x

2
i
,

ri = yi − xi β̂.

In inner product with < x , y >=
∑

i xiyi
β̂ = <x ,y>

<x ,x> , r = Y − X β̂.
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Multiple Linear Regression w/ orthogonal x ’s

Y = Xβ + ε where X = (X1, · · · ,Xn)t

β̂ = (X tX )−1X tY =
∑n

1 xiyi∑
i x

2
i
,

ri = yi − xi β̂.

β̂j =
<Xj ,y>
<Xj ,Xj>

, r = y − X β̂.

When inputs are orthogonal, they have no effect on each
other parameter estimates in the model.
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Succession Orthogonalization w/ general x ’s

Orthogonality occurs in balanced, designed experiment but not in
general

Initialize z0 = x0 = 1

For j = 1, 2, · · · , p
Regress xj on z0, z1, · · · , zj−1 to get

γ̂lj =
<zl ,xj>
<zl ,zl>

, l = 0, 1, · · · , j − 1

zj = xj −
∑j−1

k=0 γ̂ljzk .

Regress y on the residual zp to get β̂p.

Gram-Schmidt procedure for multiple regression

z ’s are orthogonal to each other.

Iterative projection of Y onto z ’s

β̂ = (β̂0, · · · , β̂p)′ is a LSE.
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Succession Orthogonalization: Recap

β̂j represents the additional contribution of Xj on Y , after Xj

has been adjusted by X0,X1, · · · ,Xj−1.

Ŷ = X β̂ is the projection of Y onto column space of X

Non-unique β̂. Unique Ŷ

Alternative iteration for β: Iterative residual fitting.

Exercise 1: Write down the algorithm for iterative residual fitting
and show that the obtained β̂ also solves the normal equation.
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Unsatisfying LSE

Y |X1, · · · ,Xq, q large/huge

Accuracy
Even if β̂ = (X tX )−1X tY exists, it may have large variance.

Interpretation
Non-uniqueness

Scientific Important X might be missing

Variable selection
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Subset Selection

Y |X1, · · · ,Xq, q large/huge. Want to pick p(<< q) X’s out of
them.

What have we learned before?

Accuracy versus parsimoniousness

Mission impossible: High accuracy, few indep variables

Criterion-based approach: R2
adj , AIC, etc

Important First

Simple versus Complex terms

Use auto procedure only when necessary. Screening rather
than determing.
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Shrinking Methods

ˆβridge = argminβ
{

(Y − Xβ)t(Y − Xβ) + λβtβ
}

What does this mean? Alternatives?

(Ex 2) It can be shown

ˆβridge = (X tX + λI )−1X tY .
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