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Motivating problems

What is your income based on the items you bought? [Regression]

Prostate Cancer [Regression] (http:
//www.cancer.gov/cancertopics/factsheet/detection/PSA)

Animal Recognition (Is it a dog?) [Classification]

Email Spam

Hand-written Digit Recognition

cf. Figure 1.
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Formulation of SML problem

Let (y,-,x,-),f’zl ~iid PY,X with y’s ey x'se Xx.
Objective: Find F € F such that
Ey xL(Y, F(X)) is minimized.
@ For classification problem, #) = K < co. And Y = R = (—0o0, o0)
for general prediction problem.
@ Examples: Hand-digit recognition, spam-detection, diagnosis,
precipitation prediction, etc.
@ Learning (by examples [mainly training data]) vs. Rule-based
classification

@ supervised, semi-supervised, unsupervised.
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Statistical Decision Theory: Versions of Expected Losses

[Point Estimation Problem]
Let Xi,---, X, ~ fy, for example, pdf of N(8, 02) or pmf of Bernoulli(6)

~

Objective: Find 6,
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Statistical Decision Theory: Versions of Expected Losses

[Point Estimation Problem]
Let Xi,---, X, ~ fy, for example, pdf of N(8, 02) or pmf of Bernoulli(6)
Objective: Find 6, which minimizes

o Risk: R(6,0) = ExoL(6,6(X))

o Bayes expected loss: Ey|,L(0, 0(x)) wrt 7t

o Bayes Risk: r(7t,0) = ExgL(6,0(X)) wrt 7
among all § € D, collection of all estimators
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Which decision ¢ is better?

With respect to risks
@ 01 >g 0o iff
R(6,01) < R(0,67) for all 6 and inequality holds for some 6 € ®

@ ¢ is inadmissible in D iff
there exists J, which is R-better than .

@ J is admissible in D iff
it is not inadmissible in D
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Bayes Procedure

We say J, is a Bayes procedure wrt 7t iff

On = arg (rsréig r(r,d).
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Complete Class Theorem

e A class C is complete if for any decision J not in C, there exists a
decision 6 which dominates .

@ Under some regularity conditions, the class of Generalized Bayes
procedures form a complete class.

o Implication: Search no further. Work with Generalized Bayes
procedures.
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E(Y]x)
Consider X € RP, Y € R with joint prob distribution Py x. Seek a ftn f
for predicting Y given X. Under L(Y, (X)) = (Y — f(X))?, squared

error loss, in the spirit of Bayes risk, find f minimize the Expected
Predicted Error (EPE(f)) among all possible functions

EPE(f) = E(Y = f(X)? = [(y—F(0)PdPyx(yx) (1)
= ExEy|x ([Y = F(X)]?[X).
Conditioning on X = x, f(x) is a constant. Pointwise minimization
fr(x) = argmincEy, ([Y — c)?|x) .
Minimizer fr(x) = E(Y|x), best prediction of Y given x. That is

EPE(fy) < EPE(f),forall f € F
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KNN as E(Y|x)

Let T = (Y}, Xj)"_, be the training data.
o f(x) = Ave(y|xi € Nk(x)), where “Ave” =average, N (x) is the
neighborhood containing the k points in T closest to x.
@ expectation is approximated by averaging over sample space.
@ conditioning at a point is relaxed to conditioning on some region
“close” to the target point x.
How good is KNN? Rationale? Search is over?
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KNN as E(Y|x)

Let T = (Y}, Xj)"_, be the training data.

o f(x) = Ave(y|xi € Nk(x)), where “Ave” =average, N (x) is the
neighborhood containing the k points in T closest to x.

@ expectation is approximated by averaging over sample space.

@ conditioning at a point is relaxed to conditioning on some region
“close” to the target point x.

How good is KNN? Rationale? Search is over?
@ Sample size usually small

@ As p increases, Ni(x) becomes huge
o Convergence

» Converge holds. f — f as n — o
» Slower rate of convergence.

C. Andy Tsao (Institute of Statistics Nationz SML Week 1 September 15, 2013 10 / 12



LS as E(Y|x)

o f(x)~x"B
° Plug this f into

(1)
= [E(xxT)
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KNN vs. LS

o LS assumes f(x) & globally by a linear function

o KNN assumes f(x) = locally by a const function
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