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Intro: Supervised Learning

9

Training data (z;, )Y,z € X,y € Y = {&1};
Testing Data (2, y)1" ~ (Xi,Y3) ~iia Pxy.

Find Machine (Classifier) F € F
F: X -

Training Error

1
TE = 5 > ytr(a)

Generalization/Testing Error

— 1
GE =+ Z lyzra)  GE = Byxlyzrx)
J
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Intro: Boosting

Ensemble classifiers.
# Weak (base) learner

# Sequentially applying it to reweighted version of the
training data
» Higher weights on the previous misclassified cases

s Boosting iteration: T
# Weighted majority vote

Schapire (1990), Freund and Schapire (1997), Friedman,
Hastie and Tibshirani (2000).
Breiman (2004), Jiang (2004), Meir and Ratsch (2003)
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Intro: Discrete AdaBoost

1. Start with weights D;(i) =1/N,i =1to N.

2. Repeatfort=1t0oT

# Obtain h;(xz) from weak learner h using weighted
training data wrt D;

o Compute ¢; = EDtl[yht(az)<O]7 a; = log 1;675.
® Update:=1 to N,

1

Dyi1(2) = ZDt(i) exp (e liy;hy(wi)<0])

where Z, I1s the normalizer.

3. Output the classifier Frr(z) = sgn {Zle atht(az)}



Convergence and Consistency

® limp_, EY,XL(FT(X), Y) — EY,XL(FB(X), Y)
® limy . Fr(x) = Fp(z), forallz € X.

where Fp(x) = sgn(log(pp—17%)) and

L(F(X),Y) = 1ypx)<o-




Intro: Theories

# Bayes consistent
(Population Version, Breiman (2004)).
Process Consistent
(Sample Version, Jiang (2004))

# Regularization needed, say, early stopping, restriction
on base learners,particularly for noise data.

On the other hand
# Relatively immune to overfitting in practical apps.

# Mease and Wyner (2007, JMLR). Evidence
Contradictory to Statistical View.
s Relatively immune to overfitting (Convergence)

» No reqgularization needed for some noisy data sets




“Statistical View”: FHT’s Insights

Friedman, Hastie and Tibishirani (2000).

#® The Discrete AdaBoost (population version) builds an
additive logistic regression model via Newton-like

updates for minimizing E (e~ Y ¥(X)),
# Exponential Criterion

L(Y,F(X)) = e "FX) ~ Ly(Y, F(X)) = Ly px)<o)-
o Easier for statisticians then ML approach
# Motivate boosting-like algorithm
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Closer Look

Goal: Predicting Y € {£1} by the sign of estimated F'.
F:X —R.

® ExJ(F(X))=Exyle Y ¥ ~ Exylyrix)<ol

#® Min J(F(x)). Update F(z) by F(x) + cf(x) with
flx)=2x1,ceR

# For fixed c and z, expand at f(x) =0

Fiii1(x) = Fy(x) + ap sgn(FEy, (Y|x)) where

1—615

¢y = log( & )7 €t = Ewtl[y sgn(Euw, (Y|x))<O0]

wi(z,y) = exp(—yFi()).
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Motivating Questions

# Convergence: Whether this iterative update converge?

# Consistency: Does it converge to the optimal Bayes
with respect to Lo(Y, F'(X)) = Ly rx)<o?

# Mease and Wyner (2007). Evidence Contradictory to
Statistical View. of Boosting
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Questions Solved?

® “Statistic View”: AdaBoost as a conditional risk
minimizer wrt some approximate losses

» AdaBoost can overfit
» Regularization needed
#® process-consistent or consistent under conditions on
base learners
# Mease and Wyner (2007): Simulation experiments
» AdaBoost relatively immunes to overfitting
» No regularization needed




A decision theoretical approach

Find F'(z) minimizing By, L(Y, F(z))

® Y =g(f) =sgn(f) and X ~ Py(x)

® 0~ m(0),prior

# Statistical problem

Objective: Find a classifier F minimizing

J(F) = Ep90)L(9(0), F(2)) = Eqg0) L(g(0), F(x))
Loss

L(g(0), F(z)) = e 9OF®) ~ Lo(g(0), F(2)) = Lig(0)r(x)<0]-




Normal-normal setting

Let X ~ N(0,0%) and 7(0) ~ N(p, 72), w/ known . and 72
Posterior w(0|z) ~ N(uz, p~ 1), where

1(,u $)_02M+T21’

e = o\2 T 52) T 521 2
L1 ot
P= 3T 27 " 22

And marginal density of X




Iterative Bayes F'p;p:. Derivation

Follow the steps similar to FHT (2000)
J(F+ f) = Exgop) {6—9(9)[F($)+f(93)]}
~ J(F + f) = Bfoja) {e/OT @1 = g(0) f(2) + f2(2)/2)}

The minimizer f can then be found by differentiation

Er0)a) {9(9)6_9 <9)F(m)}
Er(o]z) {e—g(H)F(ﬂf)}

e @a( ) — @1 — @ /pp)
e F@d(\/ppa) + eF @1 — O(/ppa)]

flz) =




lterative Bayes F'p;p: Iteration

Fprpi+1(z) = Fprpi(x) + fi(z)
D(y/ppa) — 27124 [1 — D(y/ppra)]

= Fprp+(z) +

o Does I'p;p, converge?

® Does Fp;p; to the optimal Bayes procedure wrt Ly?

(I)(\/ﬁ,ux) 4+ e2FPIB,75($) [1 — (I)(\/ﬁ,uaz)} |
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lterative Bayes Fp;p. Convergence

Theorem 1. For any initial Fiprp 1(x), as t goes to infinity

()

1
Fprpi(z) — Fr(z) = 5




lterative Bayes F'p;p. Lemmas

Lemma 1 (Fixed Point Theorem). If ¢ is a contraction of it — K, that is,
there exists a € (0, 1) such that |p(x) — ©(y)| < alx — y| for all

x,y € R, then there exists one and only one = € R such that

o(x) = x.

Lemma 2 (Cauchy-Schwartz Inequality). For any real

ai,bi,i — 1,2,“- s T

(54 (5)= (E)

2(e”—1)
Lemma 3. Forallz # 0 PSR 1.




Fryp: Derivation

1 1 —err
FFHT,t(ZE) — FFHT,t(x) -+ 5 In ( ) S(Zl?)

where s(x) = sgn(f(z)) and

—g(0)Frur(x
e = Eron oo 1)
Er e3P}

B—FFHT(:I:)(I)(\/IEILLx) 4+ 6FFHT(£E)[1 B (I)(\/ﬁ,ux)]

(1)
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FHT's AdaBoost: Convergence

By calculation, the iteration becomes

FFHT(ZC) <— FFHT(a?) -+ i éﬁlﬁ) lln (1 E)S{;/(ﬁ;gjx)) — 2FFHT($)]

- (i emm)

Remark 1. One-step convergence




Bayes Risk Ex o{1i,)r(x)<0/}

# Difficulty of the problem
o Overfitting

Er(g)2)9(0) = 2@(\/ppz) — 1 and
sgn(Fr(x)) = sgn(Eq(gx)9(0)).
Letr =7/0 > 0and assume =0

Ex.0 {10 rx)<0)} = / t)dt + /000[1 — O()|n(t)dt
5 /  Gruwdb()

where n(t) ~ N (\/mu, Jz) .




Bayes Risk: h(r)

Define

u=0
h(r) = 2 / B(ru)dD(w).

Since h(1) = f1/2 Pdd + f1/2 — ®)d® = ; and

W(r)=—[r(1+r%)]"!
Thus

11

Ex g {1[g(9)F(X)<O]} = h(r) = 5 tan " (2)
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Summary

#® Consistency of Fprg and Frgr

#® AdaBoost Fryr yields a highly effective one-step
convergence under our distributional assumption

# Bayes Risk




Concluding Remark

# For the classification problems we formulated, our
population version results suggest AdaBoost is
extremely effective and no regularization needed.

o Contrast with current “statistical view” of boosting:
+distribution assumption; —base learner/target learner

assumptions.

# Distribution modelling can provide alternative “statistical
view” to the boosting.

Thanks for your attention!
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