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Ways to improve KNN, LSE

Estimation of E (Y jx) through KNN or regression can fail

Curse of dimensionality: KNN includes points afar leads to
large error

If special structure is known, further reduction in bias and
variance is possible.

Prediction Problem

Statistical Model: Assumption on PY ;X (or � �, say
Y

(X ) + �

Supervised learning
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Functional approximation

Function approximation

regression: f ( x ) = x 0 �; �

2

Rp

linear basis expansions : f�(x ) = Pk hk(x ) �k
fhk(x ) gkforms a basis for the feasible/approximate space F

where the targetf is located/approximated.

Examples: x 2

1
; x1x2; cos(x3). Polynomials, trig functions. Also

hk(x ) =1

1+

exp

( � x0� )

Residual Sum of Squares (RSS)RSS( � ) =
Pni =1( yi

f�( xi 2:Projection.
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E (Y jX ) linear in X1, � � � , Xp

Simple: easier computation, interpretation and communication

Readily generalizable: transformation on Y and X ,
combination of X ’s’

Conceptual Framework for more general problems, for
example, nonlinear problems.
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De�nition

(Yi ; zi )
n
i



KNN, LS and more
Introduction of Linear Methods

Linear Regression Models and LS
Regression by Successive Orthogonalization: x3.3

Variable Selection

How 
exible is LR?

Assume �i �iid N 2d 51

Yi = �0 + �1Xi + �i

Yi = �0 + �1X1i X2i + �i

sin

Yi d 51 =

�0 + �1Xi d 51 +�i

Your turn

quantitative inputs, X

transformation of quantitative inputs,

X d 51
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How 
exible is LR?

Assume �i �iid N(0; �2)

Yi = �0 + �1Xi + �i

Yi = �0 + �1X1i X2i + �i

sin(Yi ) = exp(�0 + �1Xi ) + �i

Your turn

quantitative inputs, X

transformation of quantitative inputs, sin(X ); log(X );
p

X

powers, X2 = X 2;X3 = X 3

interactions: X3 = X 2
1 X2.

For GLM (general linear model), qualitative inputs, say

1[X>20]:

Remark: Linear in parameters (�) not in X 1
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How 
exible is LR?

Assume �i �iid N(0; �2)

Yi = �0 + �1
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Estimation of LR

Y = X� + �

Solve � st Q(�) = jjY � X�jj2 is minimized

Normal equation: � solves X t(Y � X�) = 0:

When X tX is nonsingular, �̂ = (X tX )−1X tY .

Geometric Interpretation: Ŷ = X (X tX )−1X tY is the
projection of Y onto the column space of the design matrix X .
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Inference: HT and CI

�̂ � N(�; (X tX )−1�2)

�̂2 = jjY � Ŷ jj2=(n � p � 1):

(n � p � 1)�̂2 � �2�2
n−p−1
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Simple Linear Regression

Yi = xi� + �i (No intercept)

Y = X� + � where X = (x1; � � � ; xn)t

�̂ = (X tX )−1X tY =
Pn

1 xi yiP
i x2

i
;

ri = yi � xi �̂.

In inner product with < x ; y >=
P

i xi yi

�̂ = <x ;y>
<x ;x> ; r = Y � X �̂:
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Multiple Linear Regression w/ orthogonal x ’s

Y = X� + � where X = (X1; � � � ;Xn)t

�̂ = (X tX )−1X tY =
Pn

1 xi yiP
i x2

i
;

ri = yi � xi �̂.

�̂j =
<Xj ;y>
<Xj ;Xj>

; r = y � X �̂:

When inputs are orthogonal, they have no e�ect on each
other parameter estimates in the model.
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Succession Orthogonalization: Recap

�̂j represents the additional contribution of Xj on Y , after Xj

has been adjusted b01 TyX0;X1; � � � ;Xj−1.

Ŷ = X �̂ is the projection of Y onto column space of X

Non-unique �̂. Unique Ŷ

Alternative iteration for �: Iterative residual �tting.

Exercise 1: Write down the algorithm for iterative residual �tting
and show that the obtained �̂ also solves the normal equation.
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Unsatisfying LSE

Y jX1; � � � ;Xq, q large/huge

Accuracy
Even if �̂ = (X tX )−1X tY exists, it may have large variance.

Interpretation
Non-uniqueness

Scienti�c Important X might be missing

Variable selection
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Subset Selection

Y jX1; � � � ;Xq, q large/huge. Want to pick p(<< q) X’s out of
them.

What have we learned before?

Accuracy versus parsimoniousness

Mission impossible: High accuracy, few indep variables

Criterion-based approach: R2
adj , AIC, etc

Important First

Simple versus Complex terms

Use auto procedure only when necessary. Screening rather
than determing.

C. Andy TsaoSML Week 3






KNN, LS and more
Introduction of Linear Methods

Linear Regression Models and LS
Regression by Successive Orthogonalization: x3.3

Variable Selection

Shrinking Methods

^�ridge = argmin�
�

(Y � X�)t(Y � X�) + ��t�
	

What does this mean? Alternatives?

(Ex 2) It can be shown

^�ridge = (X tX + �I )−1X tY :
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