Bayes Consistency of Boosting: Population versus Sample

W. Drago Chen and C. Andy Tsao

Department of Applied Math, National Dong Hwa University
Conference on MDT, Statistical Inference and Applications
In Honor of Deng-Yuan Huang

Outline

Introduction
Convergence and Cons Cod

n

Intro: Supervised Learning

```
Training data ( ; ;) , \mathcal{X} \mathcal{Y} = \{\pm 1\}; Testing Data ( ; ;) \rightsquigarrow (X_i Y_i) \sim ;; X_i X_i Find Machine(Classifier) \in : \mathcal{X} \to \mathcal{Y}
```

Training Error

Intro: Boosting

Ensemble classifiers.

Weak (base) learner

Sequentially applying it to reweighted version of the training data

- Higher weights on the previous misclassified cases
- Boosting iteration:

Weighted majority vote

Schapire (1990), Freund and Schapire (1997), Friedman, Hastie and Tibshirani (2000).

Breiman (2004), Jiang (2004), Meir and Rätsch (2003)

Intro: Discrete AdaBoost

- 1. Start with weights () = 1 = 1 to
- 2. Repeat for = 1 to

Obtain () from weak learner using weighted training data wrt

Compute = $D_t 1$

Convergence and Consistency

$$\lim_{YX_{\vec{l}}} (XY_{YX_{\vec{l}}}) (B(XY_{XY_{\vec{l}}}))$$

$$B(XY_{\vec{l}}) (XY_{XY_{\vec{l}}})$$

$$B(XY_{XY_{\vec{l}}}) (XY_{XY_{\vec{l}}})$$

$$B(XY_{\vec{l}}) (XY_{\vec{l}})$$

Intro: Theories

Bayes consistent (Population Version, Breiman (2004)). Process Consistent (Sample Version, Jiang (2004))

Regularization needed, say, early stopping, restriction on base learners ,particularly for noise data.

On the other hand

Relatively immune to overfitting in practical apps

Mease and Wyner (2007, JMLR). Evidence Contradictory to Statistical View.

- Relatively immune to overfitting (Convergence)
- No regularization needed for some noisy data sets

"Statistical View": FHT's Insights

Friedman, Hastie and Tibishirani (2000).

The Discrete AdaBoost (population version) builds an additive logistic regression model via Newton-like updates for minimizing ($^{-Y}$ (X)

Exponential Criterion

$$(Y (X)) = {}^{-Y}(X) \approx (Y (X)) = \mathbf{1}_{[Y (X)]}$$

Easier for statisticians then ML approach

Motivate boosting-like algorithm

Closer Look

Goal: Predicting $Y \in \{\pm 1\}$ by the sign of estimated $\mathcal{X} \to \mathcal{R}$.

$$X$$
 ((X)) = $XY[-Y (X)] \approx XY1_{[Y (X)]}$

Min (()). Update () by () + () with () = ± 1 \mathcal{R}

For fixed and , expand at () = 0

$$t+$$
 () = t () + t

Motivating Questions

Convergence: Whether this iterative update converge?

Consistency: Does it converge to the optimal Bayes with respect to $(Y (X)) = 1_{[Y (X)]}$?

Mease and Wyner (2007). Evidence Contradictory to Statistical View. of Boosting

Regularization needed

Questions Solved?

"Statistic View": AdaBoost as a conditional risk minimizer wrt some approximate losses

AdaBoost can overfit

Normal-normal setting

Let $X\sim$ (θ) and (θ) \sim (), w/ known and Posterior (θ |) \sim ($^-$), where

$$= \frac{1}{-} \left(- + - \right) = \frac{+}{+}$$

$$= \frac{1}{-} + \frac{1}{-} = \frac{+}{-}$$

And marginal density of X

$$\sqrt[n]{'}$$
 () = $\frac{1}{\sqrt{2}}$ exp $\left\{-\frac{(-)}{2(+)}\right\}$

B: Derivation

Follow the steps similar to FFFFim(2.197(t)0.1470.197(t526687

B: Iteration

$$= \sum_{i=1}^{n} B_i(i) + \sum_{i=1}^{n} B_i(i) + \frac{(\sqrt{1} - 1)^{-1} - (\sqrt{1} - 1)^{-1}}{(\sqrt{1} - 1)^{-1} + \frac{(\sqrt{1} - 1)^{-1}}{(\sqrt{1} - 1)^{-1}}}$$

Does B_t converge?

Does B_{t} to the optimal Bayes procedure wrt ? ?

B: Convergence

Theorem 1. For any initial A > B (), as goes to infinity

$$\tilde{B}_{B}() \rightarrow \pi() = \frac{1}{2} \ln \left(\frac{\sqrt{}}{1 - \sqrt{}} \right)$$

B: Lemmas

Lemma 1 (Fixed Point Theorem). If

: Derivation

$$_{\ell}(\)\leftarrow\qquad _{\ell}(\)+\frac{1}{2}\ln\left(\frac{1-\mathrm{err}}{\mathrm{err}}\right)$$
 ()

FHT's AdaBoost: Convergence

By calculation, the iteration becomes

$$() \leftarrow \frac{() + \frac{()}{2} \left[\ln \left(\frac{(\sqrt{)})}{1 - (\sqrt{)}} \right) - 2}{1 - (\sqrt{)}} \right]$$

$$= \frac{1}{2} \ln \left(\frac{(\sqrt{)})}{1 - (\sqrt{)}} \right)$$

Remark 1. One-step convergence

Bayes Risk
$$X \theta \{1_{[\ensuremath{(\mu)}\ensuremath{(\mu)}\ensuremath{(\nu)}\ensurem$$

Difficulty of the problem **Overfitting**

$$\pi(\theta|)$$
, $(\theta) = 2$ $(\sqrt{}) - 1$ and $n(\pi(\theta)) = n(\pi(\theta|)$, $(\theta))$
Let $= 0$ and assume $= 0$

$$X \in \{1_{f(\theta)}(\theta)(X)\} = \int_{-}^{} () () + \int_{-}^{} [1 - ()] ()$$

$$= 2 \int_{-}^{} = () () ()$$

where ()
$$\sim \left(\frac{\overline{2+\tau^2}}{\tau} \quad \frac{\tau^2}{2} \right)$$

Summary

Concluding Remark