Building the Regression Model

C. Andy Tsao

Department of Applied Math, National Dong Hwa University

Outline

- Overview
- Selection of Predictors
- Diagnosis
- Remedial Measure
- Validation

Learning from Data

Objectives

- Reduction of explanatory or predictor variables Find parsioniousodel with good explanatoryprediction power. Trade-off.
- Model refinement and slection Choosing from many "good" odls, checkig the adequacy of the odels, snsiiviy of the odls, fixng the weak sots.
- Model Val13.5594(i)dation
 Ready to explain what's go13.5594(i)ng on? Read to predict what the uture will be?
- Trade-off Best explanatoryprediction power v. Parsiony Criteria and how to us them? "Good" odls

Selection-I

 $\mathbf{R}_p^2 = 1 - \frac{SSE_p}{SSTO}$. ID those with substantial increases. NOT the biggest one.

$$\mathbf{R}_a^2 = 1 - ($$

Comments

- No easy, clear-cut way to ID the best model
- Usually, many "good" models rather than one best model
- Respect the hierarchy of models
 - Higher order terms < lower order terms $(X^4 < X^1)$
 - Interaction terms < main effect terms (X₁X₂ < X₁ or X₂)
- Chapter 10 Variable Selection of Faraway, J. (2002). Also his Chapter 11 is highly recommended

Diagnosis

Checking the adequacy of a regression model

- Improper functional form of a predictor
- Outliers
 Influential observation
- Multicollinearity

Improper functional form of a predictor

Goal: Detect the suitable form of

Outliers-II

Studentized Deleted Residual:

$$\mathbf{t}_i = \frac{d_i}{s(d_i)}$$
 where $\mathbf{s}(\mathbf{d}_i) = \mathbf{MSE}_{(i)}(1 - \mathbf{h}_{ii})$

- Hat matrix Leverage values → Outlying X
 - $0 \le \mathbf{h}_{ii} \le 1$, $\sum_{i=1}^{n} \mathbf{h}_{ii} = \mathbf{p}$.
 - $\mathbf{h}_{ii} = \frac{p}{n}$. 2p/n, extreme \mathbf{h}_{ii} , outside (0.2, 0.5)
 - $\mathbf{h}_{new} = \mathbf{X}_{new} (\mathbf{X} \mathbf{X})^{-1} \mathbf{X}_{new}$ for hidden extrapolation.

Influential obs

$$\text{(DFFITS)}_i = \frac{\widehat{\mathbf{Y}_i} - \widehat{\mathbf{Y}_{i(i)}}}{\sqrt{\mathsf{MSE}_{(i)h_{ii}}}} \text{ Flag: If } |\mathsf{DFFITS}| > 1 \text{ for small/medium data set or } 2\sqrt{\mathsf{p/n}}, \text{ large data set.}$$

Cook's Distance $\mathbf{D}_i = \frac{\sum_{j=1}^n (\hat{Y}_j - \hat{Y}_{j(i)})^2}{nMSE} = \frac{e_i^2}{nMSE} \frac{h_{ii}}{(1 - h_{ii})^2} \sim \mathbf{F}_{p,n-p}$

$$(extsf{DFBETAS})_i = rac{\hat{k} - \hat{k}(i)}{\sqrt{ extsf{MSE}_{(i)} extsf{c}_{kk}}}$$

where c_{kk} is the diagonal entries of $(\mathbf{X} \ \mathbf{X})^{-1}$ Flag: DFBETAS > 1 for small/medium data; > 2 $\overline{\mathbf{n}}$. Change of signs.

- DFINE
- One vs many trouble makers.

Multicollinearity: VIF

- Problems of MLCL: X, Extra SSR, s(^), nonsignificance
- Informal Diagnosis
 - Sensitive incl/exclud of X or data
 Nonsignificance on important predictors
 - Wrong sign of estimated
 - \blacksquare Large coefficient in \mathbf{r}_{XX} , Large \mathbf{R}^2 among \mathbf{X}
 - Wide confidence ervals of
- Variat68 -156.36on l6 -0 1647 bilatton diagtora (Tel.6 -0 1647.6 try r_{XX} .

Model Validation

- Estimation/Fit the past; Predict the future
- Consistency with New Data
- Comparison with theoretical expectation, earlier empirical and simulation results
- Cross-Validation: Use of a holdout sample to check the model and predictive ability.

What's next?