Building the Regression Model

C. Andy Tsao

Department of Applied Math, National Dong Hwa University

Outline

- Overview
- Selection of Predictors
- Diagnosis
- Remedial Measure
- Validation

Learning from Data

- Controlled Experiments (F = ma, PV = n T)
- Controlled Experiments with Supplemental variables
- Confirmatory observational studies
- Exploratory observational studies

Objectives

- Reduction of explanatory or predictor variables Find parsimonious model with good explanatory/prediction power. Trade-off.
- Model refinement and selection Choosing from many "good" models, checking the adequacy of the models, sensitivity of the models, fixing the weak spots.
- Model Validation OK to explain what's going on? OK to predict what the future will be?
- Trade-off Best explanatory/prediction power vs. Parsimoniousness Criteria and how to use them? "Good" models?

Selection-I

 $p = 1 - \frac{SSE_p}{SSTO}$. ID those with substantial increases. NOT the biggest one.

ID those with smaller/smallest MSE_p .

$$\Gamma_p = \frac{E(SSE_p)}{\sigma^2} - (n-2p).$$

$$\Gamma_p = C_p = \frac{SSE_p}{MSE(X_1, \dots, X_{p-1})} - (n-2p)$$
 ID those Small C \mathbf{C}_p

Selection-II

All-subset Selection

Best among all 2^{p-1} combinations. Guidelines. Forward stepwise Selection and other search procedures

- Forward/Backward Stepwise Selection: One at a time, marginal effect, partial F-test
- Forward/Backward Selection: Marginal effect, partial (group) F-test

Diagnosis

Improper functional form of a prediction

- Goal: Detect the suitable form of Y vs X_q while X_1, \dots, X_{q-1} in the model.
- Partial Regression Plots:

$$e(Y|X_1, \cdots, X_{q-1})$$
 vs. $e(X_q|X_1, \cdots, X_{q-1})$.

- $e(Y|X_1, \dots, X_{q-1})$: residual of Y regresses on X_1, \dots, X_{q-1}
- ullet $e(\ _{q}|X_{1},\cdots,X_{q-1})$: residual of X_{q} regresses on X_{1},\cdots,X_{q-1}
- Why bother?

Outliers-I

The model (fitted) shouldn't be affect by just few points.

- LSE is EXTREMELY sensitive to outliers. Example.
- Detection: Residual-based tests and plots towards outlying Y. Why? What to expect?
 - Semistudentized residual: Same scale (Naive).

$$e_i^* = \frac{e_i}{\sqrt{MSE}}$$

Outliers-II

Studentized Deleted Residual:

$$t_i = \frac{d_i}{s(d_i)}$$
 where $s(d_i) = MSE_{(i)}(1 - h_{ii})$

- Hat matrix Leverage values Outlying X
 - \bullet 0 h_{ii}

In uential obs

- (DFFITS)_i = $p \frac{\psi_i}{MSE_{(i)h_{ii}}}$ Flag: If jDFFITS j > 1 for small/medium data set or > $2^p \overline{p} = n$, large data set.
- Cook's Distance $D_i = \frac{\sum\limits_{j=1}^n (\hat{Y_j} \hat{Y_j}_{(i)})}{pMSE} = \frac{e_i^2}{pMSE} \frac{h_{ii}}{(1 h_{ii})^2} \quad F_{p;n-p}$

$$(DFBETAS)_{i} = \frac{P \cdot k \cdot k(i)}{MSE_{(i)}C_{kk}}$$

where c_{kk} is the diagonal entries of $(X^0X)^{-1}$ Flag: DFBETAS > 1 for small/medium data; > $2=^p \overline{n}$. Change of signs.

- DFINF
- One vs many trouble makers.

Multicollinearity: VIF

- Problems of MLCL: X, Extra SSR, $s(\hat{\beta})$, nonsignificance
- Informal Diagnosis
 - Sensitive incl/exclud of X or data
 - Nonsig on important predictors
 - lacktriangle Wrong sign of estimated β
 - Large coefficient in r_{XX} , Large 2 among X
 - lacktriangle Wide confidence intervals of β
- ightharpoonup Variation Inflation Factor (TL $^{-1}$) VIF_k diagonal entry of r_{XX} .

$$(VIF)_k = (1 - {\begin{pmatrix} 2 \\ k \end{pmatrix}},$$

 $\frac{2}{k}$: $\frac{2}{s}$ of X_k regressing on the other X's.

Flag: Larger than 10 or $V\overline{I}F$

Remedial Measure

For UEQ error variances, high MTCL, INFLU obs

- Model Assumption
- **Solution** Box-Cox Transformation: * = r, say r = 0.5, 2.5

Model Validation

- Estimation/Fit the past; Predict the future
- Consistency with New Data
- Comparison with theoretical expectation, earlier empirical and simulation results
- Cross-Validation: Use of a holdout sample to check the model and predictive ability.

What's next?