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The transformed equation is (3 + +/2)u? + (3 — v/2)v? = 4, which represents an
ellipse with semi-major axis 2/v/3 — /2 and semi-minor axis 2/vV3 + /2. (We will

discover another way to do a question like this in Section 13.3.)

— B

| Find equations of the conics specified in Exercises 1-6.
- " 1. ellipse with foci at (0, 2) and semi-major axis 3.
2 2. ellipse with foci at (0, 1) and (4, 1) and eccentricity 1/2.
@ parabola with focus at (2, 3) and vertex at (2, 4).

4. parabola passing through the origin and having focus at ===
(0, —1) and axis along y = —1.

5. hyperbola with foci at (0, 4=2) and semi-transverse axis 1.

6. hyperbola with foci at (&5, 1) and asymptotes
r==x@ 1.
— [ Exercises 7-15, identify and sketch the set of points in the
plene satisfying the given equation. Specify the asymptotes of
any hyperbolas.

T4y o= —1

9, 4x2+y2—4y:0

» 1L x2+2x—y=3
(1357 2y% 43y + 4y =2

4. 9x2 +4y? — 18x + 8y = —13

15, 9% 4+ 4y% — 18x + 8y = 23

8 x*+4y? 4y =0
10. 4x2—y2—4y=0
12, x +2y +2y> =1

asly. -16. Identify and sketch the curve that is the graph of the equation
G-y -@+y)?=1
#17. Light rays in the xy-plane coming from the point (3, 4) .
reflect in a parabola so that they form a beam parallel to the: *
1ts a reck: x-axis. The parabola passes through the origin. Find its
L equatiOD equation. (There are two possible answers.) =
»s through

18. Light rays in the xy-plane coming from the origin are
reflected by an ellipse so that they converge at the point

(3,0). Find all possible equations for the ellipse: -

In Bxerciges 19-22, identify the conic and find its céntre, ~

Principa] axes, foci, and eccentricity. Specify the asymptotes of
Ay hyperbolas,

Wrytryon

20, x2+2XY+y2=4x—4y+4
L824 10y 11932 g

2, x2~4xy+4y2+2x+y=0

» Z];:tfgfcm'-direct.rix definition of a .conic deﬁne§ a coic as
Pomts P in the plane that satisfy the condition
distance from p 10 F
distance from P to D &

m' Para“r”ﬁi‘e

L

x = f(),

\

y=g(@®.

where F is a fixed point, D a fixed straight line, and ¢ a fixed
positive number. The conic is an ellipse, a parabola, or a
hyperbola according to whether ¢ < 1,6 = 1, or ¢ > 1. Find
the equation of the conic if F is the origin and D is the line
X =—p.
Another parameter associated with conics is the semi-latus
rectum, usually denoted £. For a circle it is equal to the radius.
For other conics it is half the length of the chord through a focus
and perpendicular to the axis (for a parabola), the major axis (for
an ellipse), or the transverse axis (for a hyperbola). That chord is
called the latus rectum of the conic.

24. Show that the semi-latus rectum of the parabola is twice the
distance from the vertex to the focus.

25. Show that the semi-latus rectum for an eflipse with
semi-major axis ¢ and semi-minor axis & is £ = b%/a.

26

.

Show that the formula in the above exercise also gives the
semi-latus rectum of a hyperbola with semi-transverse axis @
and semi-conjugate axis b.

%27

Suppose a plane intersects a right-circular cone in an ellipse
and that two spheres (one on each side of the plane) are
inscribed between the cone and the plane so that each is
tangent to the cone around a circle and is also tangent to the
plane at a point. Show that the points where these two

. spheres touch the plane are the foci of the ellipse. Hint: All

o

tangent lines drawn to a sphere from a given point outside
the sphere are equal in length. The distance between the two
ciréles in which the spheres intersect the cone, measured
along generators of the cone (i.e., straight lines lying on the
cone), is the same for all generators.

+28

State and prove a result analogous to that in Exercise 27 but
pertaining to a hyperbola.

#29. Suppose a plane intersects a right-circular cone in a parabola
with vertex at V. Suppose that a sphere is inscribed between
the cone and the plane as in the previous exercises and is
tangent to the plane of the parabola at point F. Show that the
chord to the parabola through F which is perpendicular to

FV has length equal to that of the latus rectum of the

parabola. Therefore, F is the focus of the parabola.

Suppose that an object moves around in the xy-plane so that the coordinates of its
position at any time 7 are continuous functions of the variable :
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P=(x,y)

. Figure 8.22__An involut% of a circle

Bl Exercises 8.2 J1 11|

vhere. ?‘ InExercises 1-10, sketch the given parametric curve, showing its

direction with an arrow. Eliminate the parameter to give a
Cartesian equation.in x and y whose graph contains the
parametric curve.

Lx=1+2t y=1% (—00 <t < 0Q)

circlé,., Lx=2—t y=t41, 0<t<o0)
rcleis. . 1
called Mx=?,y=t—1, <t <4
he end 4 1 ;
« X = — —_
- 1127 1+t2’( o0 <1 <00)
:stﬂthu %&:35m2t, y = 3cos 2t, (OSTS %)
ing the; ,
whet?, @x:asect, y = btant, (—% <t< %) _

. X=3sinmt, y=4cosmt, (-1 <:r<1)
8 ¥ =cossins, y =sinsins, (—o0 < § < 00)
31, y=sin’t, (0 <t <2m)

Wors1o 422 y=241, (-221<2)

A = CoS8

find its Cartesian equation.

1. Describe the parametric curve x = 2 — 3 cosh?,
Y= -1+ 2sinhz.

[Presents a different arc of the parabola with equation
TP =1+ -0t

3 (a) X =

q0)

()

cos*s, y = sin*¢
*=sects, y = tan*+
=tan*s, y = sect¢

1. Describe the parametric curve x = cosh?, y = sinh¢, and

13, . .
‘14MDescnbe the curve x =7 cosz,y =1 sinz, (0 < ¢ < 4m).
5 Show that each of the following sets of parametric equatiors

: an: Parametrization of the parabola y = x? using as

) eter the slope of the tangent line at the general point.

2 Parametrization of the circle x2 + y2 = R? using as
eter the slope m of the line joining the general point to

the point (R, 0). Does the parametrization fail to give any
point on the circle?

. Acircle of radius a is centred at the origin O. T is a point on

the circle such that OT makes angle ¢ with the positive
x-axis. The tangent to the circle at 7 meets the x-axis at X.
The point P = (x, y) is at the intersection of the vertical line
through X and the horizontal line through 7. Find, in terms
of the parameter 7, parametric equations for the curve €
traced out by P as T moves around the circle. Also,
eliminate ¢ and find an equation for € in x and . Sketch C.

. Repeat Exercise 17 with the following modification: OT

meet$ a second circle of radius b centred at O at the point Y.
P = (x, y) isat the intersection of the vertical line through
X and the horizontal line through Y.

. (The folium of Descartes) Eliminate the parameter from

the parametric equations

3t 3t
=—7, =— t# -1,
=1 V=115 ¢ #-1
and hence find an ordinary equation in x and y for this curve.
The parameter ¢ can be interpreted as the slope of the line
joining the general point (x, y) to the origin. Sketch the
curve and show that the line x 4+ y'= —1 is an asymptote.

. (A prolate cycloid) A railroad wheel has a flange

extending below the level of the track on which the wheel
rolls. If the radius of the wheel is a and that of the flange is
b > a, find parametric equations of the path of a point P at
the circumference of the flange as the wheel rolls along the
track. (Note that for a portion of each revolution of the
wheel, P is moving backward.) Try to sketch the graph of
this prolate cycloid.

(Hypocycloids) If a circle of radius b rolls, without
slipping, around the inside of a fixed circle of radius a > b, a
point on the circumference of the rolling circle traces a curve
called a hypocycloid. If the fixed circle is centred at the
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origin and the point tracing the curve starts at (a, 0), show
that the hypocycloid has parametric equations

a—>b
t 9
b
a—>b
ty,
b

where ¢ is the angle between the positive x-axis and the line
from the origin to the point at which the rolling circle
touches the fixed circle.

If a = 2 and b = 1, show that the hypocycloid becomes a
straight line segment.

If a = 4 and b = 1, show that the parametric equations of the
hypocycloid simplify to x = 4cos> ¢, y = 4sin’ . This™™
curve is called a hypocycloid of four cusps or an astroid.

(See Figure 8.23.) It has Cartesian equation
x2/3 4923 = 4213,

X = (a—b)cost-l—bcos(

y=(a—b)sint—bsin<

y

—4 x

—4

Figure 823 The astroid x%/ + y?/3 = 42/3

Hypocycloids resemble the curves produced by a popular ¢~
children’s toy called Spirograph, but Spirograph curves B
result from following a point inside the disc of the rolling

circle rather than on its circumference, and they therefore do

not have sharp cusps.

(The witch of Agnesi)

(a) Show that the curve traced out by the point P =
constructed from a circle as shown in Figure 8.24 has
parametric equations x = tant, y = cos? ¢ in terms of
the angle ¢ shown. (Hint: You will need to make
extensive use of similar triangles.)

(b) Use a trigonometric identity to eliminate ¢ from the
parametric equations, and hence find an ordinary
Cartesian equation for the curve. :

This curve is named for the Italian mathematician Maria
Agnesi (1718-1799), one of the foremost women scholars of
her century and author of an important calculus text. The
term witch is due to a mistranslation of the Italian word
versiera (“turning curve”), which she used to describe the
curve. The word is similar to avversiera (“wife of the devil”
or “witch™).

We say that a plane curve is smooth if it bas a tangent line at each poi
tangent turns in a continuous way as P moves along the curve. (That

23. m=1,

25. m=2,
27. (Epicycloids) Use a graphing calculator or computer

28.

P =(x,y)

&

W=
P
©

Figure 8.24 The witch of Agnesi

In Exercises 23-26, obtain a graph of the curve x = sin(mz),
y = sin(nt) for the given values of m and n. Such curves are
called Lissajous figures. They arise in the analysis of electrical
signals using an oscilloscope. A signal of fixed but unknown
frequency is applied to the vertical input, and a control signal is
applied to the horizontal input. The horizontal frequency is
varied until a stable Lissajous figure is observed. The (known)
frequency of the control signal and the shape of the figure then
determine the unknown frequency.

24. m=1,
26. m=2,

n=2 n=23

n=3 n=>5

graphing program to investigate the behaviour of curves with
equations of the form

1 1
x=<1+—>cost——cos(nt)
n n
. U1\ 1
‘ y=<1+—>smt——sm(nt)

‘ n n

for various integer and fractional values of #n > 3. Can you
formulate any principles governing the behaviour of such
curves?

(More hypocycloids) Use a graphing calculator or
computer graphing program to investigate the behaviour of
curves with equations of the form

! 1
x = (1 + —> cost + 1 cos((n — 1)¢t)
n n
1\ . 1.
y = (1 + —) sint — — sin((n — 1)¢)
n n

. . u
for various integer and fractional values of n > 3. Can¥?
formulate any principles governing the behaviour of thes®
curves?

nt P and ‘
is, the 20>
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is horizontal; at points where dx/dt = 0 but dy/dt # 0, the tangent is vertical. For
points where dx /dt = dy/dt = 0, anything can happen; it is wise to calculate left-
and right-hand limits of the slope dy/dx as the parameter ? approaches one of these .
points. Concavity can be determined using the formula obtained above. We illustrate
these ideas by reconsidering a parametric curve encountered in the previous section.

BCULY M Use slope and concavity information to sketch the graph of the para-
metric curve

x=fO=>£-3  y=gny=1, (2512
previously encountered in Example 5 of Section 8.2. ]

Solution 'We have ‘

) =3 -1)=3¢-D¢+1), g @) =2t

The curve has a horizontal tangent at ¢ = 0, that is, at (0, 0), and vertical tangents at
¢t = %1, that is, at (2, 1) and (—2, 1). Directional information for the curve between

these points is summarized in the following chart.

;- 2 _1 0 i 2 |
1@ + 0 - - - 0 + |
g0 I T

x — <« <~ <« —

y \ { 1 0
curve N VA N

For concavity we caleulate the second derivative d2y/dx? by the formula obtained
above. Since f”(f) =6t and g"(¢) = 2, we have

d2

IR AOTRORTAOYAL0

d’y
dx? (f'@)?
S -n@ -2 2 241
=T BE@-nP 9@ -D¥

which is never zero but which fails to be defined at = £1. Evidently the curve is
concave upward for —1 < ¢ < 1 and concave downward elsewhere. The curve is

sketched in Figure 8.26.

=
>l' . ‘ 7
o cises 1—'8, find the coordinates of the'points at which the x =sint, y =sinz —tcost
z=Paametric curve has (a) a horizontal tangent and (b) a 3¢ 342
" 7. x =sin2t, y = sint 8. x=——=,y=
x =sin2¢, y =sin =117 Y=L

3, y =213 4342

Find the slopes of the curves in Exercises 9-12 at the points
2 2 .
=2, y=1t"+2 indicated.
' 9, x=134¢ y=1—1, att=1
x=t4—t2, y=1 +2t, att =—1
x = cos2t, y =sint, att = /6
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12. x=e¥, y=1e¥, att =-2
Find parametric equations of the tangents to the curves in
Exercises 13-14 at the indicated points.
=3 =2, y=t+2°, att =1
14 x =t —cost, y = 1—sint, att =m/4
5. Show that the curve x = > — 1,y = #2 has two different
tangent lines at the point (0, 1) and find their slopes.
Find the slopes of two lines that are tangent to X = sinz,
y = sin2¢ at the origin.
Where, if anywhere, do the curves in Exercises 17-20 fail to be

16.

smooth? i
17. x =1, y= 2 )

In this section we look at the problems of finding le
cally, areas of surfaces of revolution obtained by rotating
of plane regions bounded by parametric curves. .

Arc Lengths and Surface Areas

Let € be a smooth parametric curve with equations

x = f@),

(We assume that f /(¢) and g’ () are continuous on the interval [a, b] and are neve
both zero.) From the differential triangle with legs dx and dy and hypotenuse ds (e
Figure 8.27), we obtain (ds)* = (dx)? + (dy)?, so we have

y =g,

2

i dy

dx

Figure 8.27 A differential triangle

. The arc le’r"igthféiéiijx_énf:fbriéﬂpﬁféiri‘etﬁé curve

18. x=(¢—D* y=@—-1°
19. x =tsint, y =1 20. x =1>, y=1t—sint
In Exercises 2125, sketch the graphs of the given parametric
curves, making use of information from the first two derivatives,
Unless otherwise stated, the parameter interval for each curve ig
the whole real line. ' '
21, x =122, y=1>2—4t 22. x=1,y=3%-1
2
1+
24 x =13 —3t—2,y=1—1t-2
25. x = cost +tsint, y =sint —£COS?, (t = 0). (See
Example 9 of Section 8.2.)

23. x =123t y=

ngths of curves defined parametr-
parametric curves, and aress

(a<t=<b).

x =é' co

Example 1.

st,

Solution We have‘

dx

Squaring these formulas, adding and simplifying, we get

dr

=% (coszz —2costs'mt+sin2t+sin21 4-2sintcost

= ¢’ (cost — sint),

ds\? 2t SN2 2 2
= ¢*’(cost — sint)” + e~ (sint + cost)

— 2e2t

Find the length of the parametric curve

y = ¢’ sint, 0<t=<2).

a _ ¢ (sint + cost).
dt

2.) &
+cos‘f) ‘
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I ] Exercises 8.4

Find the lengths of the curves in Exercises 1--8.
L x=3% y=2> (0<r<1)

x=1+2, y=1-1% (-1<t<2)

x :acos3t, y =asin3t, O=<t=<2m)

In(1+7%), y=2tan" 'z, (0<z<1)

x = tzsint, y = t?‘cosz, O=<t=<2m)

X

x=cost+1tsint, y=sint —fcost, (0 <t <2w)
x =t-+sint, y=cost, (0 <t <)
x = sin?r, y=2cost, 0<t<m/2)

QFmd the length of one arch of the cycloid x = at —.asin?,
y ==a —acost. (One arch corresponds to 0 <7 < 2x.)

® N A@Ew®

) Find the area of the surfaces obtained by rotating one arch of
the cycloid in Exercise 9 about (a) the x-axis, (b) the y-axis.

11. Find the area of the surface generated by rotating the curve
x =¢'cost,y = e'sint, (0 <t < m/2) about the x-axis.

12. Find the area of the surface generated by rotating the curve
of Exercise 11 about the y-axis.
Find the area of the surface generated by rotating the curve
x =322,y =2¢3,(0 <t < 1) about the y-axis.

; 14. Find the area of the surface generated by rotating the curve

i ‘ x =312,y =2¢%, (0 < ¢ < 1) about the x-axis.

- ‘ - e - In Exercises 15-20, sketch and find the area of the region R

i : described in terms of the given parametric curves.

[r, 8], where

(i) r is the distance from O to P, and

(" S (i) 0 is the angle that the ray O P makes with the polar axis (counterclockwise aﬂ"le
‘ being considered positive).

We will use square brackets for polar coordinates of a point to distinguish them fro 2
rectangular (Cartesian) coordinates. Figure 8.33 shows some points with their
coordinates. The rectangular coordinate axes x and y are usually shown on 2 Pol
graph. The polar axis coincides with the positive x-axis. :

Unlike rectangular coordinates, the polar coordinates of a point are 0ot
The polar coordinates [r, 61] and [r, 6] represent the same point provided !
differ by an integer multiple of 27:

: The polar coordinate system is an alternative to the rectangular (Cartesian) coordinad
[ iR "..system for describing the location of points in a plane. Sometimes it is more 1mportan
‘ ! . “"to know how far, and in what direction, a point is from the origin than it is to know it
P « Cartesian coordinates. In the polar coordinate system there is an origin (or pole), 0
| and a polar axis, a ray (i.e., a half-line) extending from O horizontally to the righ
i The position of any point P in the plane is then determined by its polar coordinat

6 = 61 + 2nm,

@ R is the closed loop bounded by x = 13 — 4¢, y =12,

(-2=<t<2).
16/ R is bounded by the astroid x = a cos ¢, y =asin®y,
O <t <2m).
17. Ris bounded by the coordinate axes and the parabolic arc

x =sin*¢, y = cos?z.

18. Risbounded by x = cosssins, y = sin? s,

(0 < s <7/2), and the y-axis.
R is bounded by the oval x = (2 + sint) cos ?,
y= (2 +sint)sint.

#20. R is bounded by the x-axis, the hyperbola x = secz,
y = tan?, and the ray joining the origin to the point
(secty, tan zp).

21. Show that the region bounded by the x-axis and the 2
hyperbola x = cosh?, y = sinh? (where ¢ > 0), and the ray |
from the origin to the point (cosh #y, sinh #p) has area 1 /2
square units. This proves a claim made at the beginning of |
Section 3.6.

22. Find the volume of the solid obtained by rotating about the
x-axis the region bounded by that axis and one arch of the
cycloid x = at —asint, y = a — acost. (See Example 8 in
Section 8.2.)

23. Find the volume generated by rotating about the x-axis the
region lying under the astroid x = acos’ ¢, y = a sin3 ¢ and
above the x-axis.

pol

[

uniqlli
and

wheren =0, +1, £2, ...
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Figure 8.46 A conic curve with
eccentricity &, focus at the origin, and
directrix x = —p

1o seos

i Examples of the three possibilities (ellipse, parabola, and hyperbola) are shown in
' Figures 8.47-8.49. Note that for the hyperbola, the directions of the asymptotes are
o the angles that make the denominator 1 — & cos¢ = 0. We will have more to say about
» ‘ polar equations of conics, especially ellipses, in Section 11.6.

AN

Y Figure 8.47 Ellipse: ¢ <1 7" Figure 8.48 Parabola: € =1 Figure 8.49 Hyperbola: & > 1

71

1/ cos~1(1/e)

Exercises 8.5

In Exercises 1-12, transform the given polar equation to 13. r =1+sinb '/i:l\‘ r=1-—cos®@+%)
e q 4/
rectangular coordinates, and identify the curve represented.
15. r =1+ 2cosé 16. r =1 —2sinf
1. r =3secéd 2. r=—2csch
5 . ®r=2+cos9 18. r =2sin26
3. r—_—m‘e V:SIDQ-FCOS@v'
. S cos ) 19. r = cos 36 20. r = 2cos 46
5. r* =csc26 ~ 6. r =secHtanf
2 21. r* = 4sin26 22. r* =4cos30
7. r =secH(l+tand) 8. r=———==
cos*6 +4 SInZ 6 \%«l. }"2 = sin 36 24. r =1Inb L
. 5.9 .:7
@ r= ___1—9 10. r = _2_5 Find all intersections of the pairs of curves in Exerc1ses 25-28 .
1— 2 -
cos c08 @. r =+/3cos@, r=sind
1 r:—z—— 12 r=—L—— 26. r> = 2cos(20 =1
T T 2sme &7 T T sme 26 77 =200808), 7=
In Exercises 13—24, sketch the polar graphs of the given %\%} r=1+cosf, r=>3cosf

equations. =28. r=0, r=0+m




29, Sketch the graph of the equation r = 1/6, 6 > 0. Show that
™" this curve has a horizontal asymptote. Does 7 = 1/(§ — a)
have an asymptote?

30. How many leaves does the curve r = cos n6 have? the curve
r* = cosn6? Distinguish the cases where 7 is odd and even.

31, Show that the polar graph r = f(9) (where f is continuous)
can be written as a parametric curve with parameter 6.

In Exercises 32-37, use computer graphing software or a

graphing calculator to plot various members of the given families
of polar curves, and try to observe patterns that would enable you
to predict behaviour of other members of the families.

m=1, 2,3,
ng‘, r=1+cosfcos(mb), m=1,2 3,...
M, r=sin(29) sin(mb), m=2,3,4,5,...

m Slope

N r= cos 920s(m9)

g

1OW1 in
otes are
y about

SECTION 8.6:  Slopes, Areas, and Arc Lengths for Polar Curves
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35. r =1+sin(20)sin(mb), m=2,3,4,5, ...

36. r = C +cosfcos(26) for C =0, C = 1, values of C
between 0 and 1, and values of C greater than 1

r =C +cossin(30) for C =0, C =1, values of C
between 0 and 1, values of C less than 0, and values of C
greater than 1

37.

Plot the curve » = In6 for 0 < 8 < 2. It intersects itself at
point P. Thus there are two values 61 and 8, between 0 and
2m for which [£(61), 611 = [f (62), 62]. What equations
must be satsified by ¢; and 6,7 Find 87 and 65, and find the
Cartesian coordinates of P correct to 6 decimal places.

Simultaneously plot the two curves 7 = Inf andr = 1 /8, for
0 < 0 < 27. The two curves intersect at two points. What
equations must be satisfied by the § values of these points?
What are their Cartesian coordinates to 6 decimal places?

39.

There is a simple formula that can be used to determine the direction of the tangent line to
apolarcurver = f(@)atapoint P =
curve near P corresponding to polar angle 6 +4. Let S be on O Q with P S perpendicular
to O Q. Observethat PS = f(§)sinkhand SQ = 0Q — 0S = f(6+h)— f(6) cosh.
If the tangent line to r = f(¢) at P makes angle ¥ (Greek “psi”) with the radial line
O P as shown in Figure 8.50, then v is the limit of the angle SQP as & — 0. Thus

[r, 8] other than the origin. Let Q be a point on the

S f(@)sink 0 ‘
tanyr = li 1i e ‘
- A awy = lm =5 SQ = 40 F(8 + B) — F(6) cosh [o} |
(/o) f(@)cosh ’
- by I"Hopital’s Rul |
-, S F @+ h) 1 f@)snn 0V VHopital's Rule) ]
=i _fO® _ r
~ 76 " drjde-
e o
o)
' S
P
o :
v |
f |
MU 850 The angle  is the limit of \ — |
aﬂglesgpashﬁowls e limit o 0 g

o “'At any. pomt P oth th:

the onom o ) ar‘ curver = f (9) the angle

U between the rad1al hne from the 0r1°1n to P'and the tangent to the curve is

- given by

£

tan = ———

RCOR
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so we obtain the following formula:

Arc length element for a polar curve. ;

The arc 1en0th element for the polar curve 7= f @) s

= }(f’(e'zi)2

+ (f(&))‘zfze.{ *

Figure 8.55 The arc length elementfora  This arc length element can also be derived from that for a parametric curve. See

polar curve - Exercise 26 at the end of this section.

Find the total length of the cardioid r = a(l + cos ).

e the length from 6 = 0Otod = m. (Review i

* Solution The total length is twic
o for the cardioid, the arc length is

N : - . - Figure 8.53.) Since dr/df = —asin

T
5§ = 2/ Va2 sin2 6 + a?(1 + cos 6)2do
0 :
=2 f 242 + 2a%cos6df  (butl-cost = 2c0s2(8/2))

A o _2\/§af 1/200'52 do

=4a f cos = d9 =8a sm = 8a units.
0o 2 2o .
e ““‘ In Exercises 1-11, sketchand find the areas of the given polar is4 /4 Jeec26 db.
; regions R. . =
1 1. R lies between the origin and the spiral r = ﬁ . . 16. One 1eaf of the lemniscate r2 = cos 26 is rotated (a) about
0<6<2w. » = ' the x-axis and (b) about the y-axis. Find the area of the
‘ 2. Rles between the origin and the sp1ra1 r=6, 0.< 9 < 2. surface génerated in each case.
“ @ R is bounded by the curve 22— a2 cos26. «17. petenmneththe anctlflesdat which the straight line 6 = 7/4
4. Risone leaf of the curve r = sin36- intersects the cardioid 7 = 1+ sin. 5
£\ R is bounded by th 10, +18. At what points do the curves 2 = 25in26 and r = 2008
O is bounded by the curve 7 = €03 intersect? At what angle do the curves intersect at each of
6. R lies inside both of the circles 7 = a and 7 = 2a cos 6. these points? :
de the circle #19. At what points do the curves 7 = 1—cos@andr =17 f
cho

7. 'R lies inside the cardioid 7 = 1 —cos 8 and outsi
‘ intersect? At what angle do the curves intersect at €2

r=1"
\ R lies inside the cardioid r = a(l — sin0) and inside the these points?
circle r = 4. Tn Exercises 20-25, find all points on the given curve whexe :}
9. R lies inside the card101d r = 1+ cos § and outside the circle tangent line is horizontal, vertical, or does not exist. ’
r = 3cosb. ' +20. r =cos@ + sind 21, r =2cosf
10. R is bounded by the lemniscate 72 = 2 cos 26 and is outside 5 )
the circle r = 1. %22, r* = cos20 @ r =sin26
@ R is bounded by the smaller loop of the curve 24, r=¢ 25, r = 2(1 —sinf)
’“1+2°C’59 26. The polar curve r = f(6), (@ <6 < B), canbe
parametrized:

Find the 1engths of the polar curves in Exercises 12-14.
y._rsmé)“‘f(e ]

.r—02 0<9<TL’ 13. r=e¥, - <0 <m x =recosd = () cost,
14.- r=at, 0<6=<2rm

\15) Show that the total arc 1en0th of the 1emmseate r

o
Derive the formula for the arc length element for the P :

2 =cos26 curve from that for a parametric curve.




Chapter Review

Key Ideas

» What do the following terms and phrases mean?

& 4 conic section

< an ellipse
o aparabola < a hyperbola
¢ a parametric curve ¢ a parametrization of a curve
o a smooth curve © a polar curve

» What is the focus-directrix definition of a conic?

See » How can you find the slope of a parametric curve?
+ How can you find the length of a parametric curve?
« How can you find the length of a polar curve?
» How can you find the area bounded by a polar curve?
sview

Review Exercises

i

£ In Exercises - 1-4, describe the conic having the given equation.
B Giveits foci and principal axes and, if it is a hyperbola, its asymp-
totes.

1 2% +2y2 =2 2. 9x* —4y* =36
F 3+ =2y+3 4. 25 +8y% = 4x — 48y
1 Identify the parametric curves in Exercises 5-10.

¥ 5ot y=2-1 0=r<2)

~F 6 x=2sin3t, y=2c0s3, 0<1<1/2)

7. x =cosht, y = sinh®z,

L(-l<tr<)

9 x=cos(t/2), y = 4sin(t/2), (0 <t <)

W0. x =cost +sinz, y = cost —sinz, (0 <t <27)

8.x=e’, y=e—2

In Exercises 11-14, determine the points where the given para-
Inetric curves have horizontal and vertical tangents, and sketch the

out curves.

4
11. X = — — 3 — R
1+2 7 ro3 PR

cx=1 3y =3 43

13. x=f3—3t, y=t3

nx=1 3y =43 12

 Find the area bounded by the part of the curve x = 3 — 7,
¥ =] that forms a closed loop.

 Find the volume of the solid generated by rotating the closed
loop in Exercise 15 about the y-axis.

: fmdthe length of the curve x = ¢ — ¢, y = 4e'/2 from ¢ = O
0t =7 p

- Find the area of the surface obtained by rotatmc the arc in/
Sk Xercise 17 about the x-axis.
Lty
<h the polar graphs of the equations in Exercises 19-24.
,19 r=g ( 3_77

o <6<3E) 20 r=19], (27 <6 <2)
r e

=1+cos29 22. r =2 +cos26
1:1+200529 24. r =1 —sin30
- 0d the areq
Kercise 23,

Fing
EXercit};ee ;r;a of one of the two smaller loops of the curve in

of one of the two larger loops of the curve in
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27. Find the area of the smaller of the two loops enclosed by the
curve r = 1 ++/2siné.

28. Find the area of the region inside the cardioid » = 1 + cos 6
and to the left of the line x = 1/4.

Challenging Problems

1. A glass in the shape of a circular cylinder of radius 4 cm is
more than half filled with water. If the glass is tilted by an
angle 6 from the vertical, where 6 is small enough that no
water spills out, find the surface area of the water.

2. Show that a plane that is not parallel to the axis of a cir-
cular cylinder intersects the cylinder in an ellipse. Hint:
You can do this by the same method used in Exercise 27 of
Section 8.1.

3. Given two points F; and F» that aré foci of an ellipse and
a third point P on the ellipse, describe a geometric method
(using a straight edge and a compass) for constructing the tan-
gent line to the ellipse at P. Hint: Think about the reflection
property of ellipses.

4. Let C be a parabola with vertex V, and let P be any point
on the parabola. Let R be the point where the tangent to the
parabola at P intersects the axis of the parabola. (Thus the
axis is the line RV.) Let Q be the point on RV such that P Q
is perpendicular to RV. Show that V bisects the line segment
RQ. How does this result suggest a geometric method for
constructing a tangent to a parabola at a point on it, given the
axis and vertex of the parabola?

5. A barrel has the shape of a solid of revolution obtained by
rotating about its major axis the part of an ellipse lying between

.

2 * lines through its foci perpendicular to that axis. The barrel is

e

- 4fthigh and 2 ft in radius atits middle. What is its volume?

6. (a) Show that any straight line not passing through the origin
can be written in polar form as

_ a
" cos(@ — 6)°

where a and 6y are constants. What is the geometric
significance of these constants?

(b) Letr = g(8) be the polar equation of a straight line that
does not pass through the origin. Show that

g +2(g) —gg" =0.

(c) Letr'= f(8) be the polar equation of a curve, where f”
is continuous and » # 0 in some interval of values of 6.
Let

F = f24+2(f) - ff".

Show that the curve is turning toward the origin if F > 0
and away from the origin if F < 0. Hint: Letr = g(6)
be the polar equation of a straight line tangent to the curve,
and use part (b). How do f, f/, and f” relate to g, g/,
and g” at the point of tangency?
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7. (Fast trip, but it might get hot) If we assume that the
density of the earth is uniform throughout, then it can be
shown that the acceleration of gravity at a distance r = R
from the centre of the earth is directed toward the centre of
the earth and has magnitude a(r) = rg/R, where g is the
usual acceleration of gravity at the surface (g ~ 32 ft/s?), and
R is the radius of the earth (R &~ 3960 mi). Suppose that a
straight tunnel AB is drilled through the earth between any
_two points A and B on the surface, say Atlanta and Baghdad.
(See Figure 8.56.)

Figure 8.56

Suppose that a vehicle is constructed that can slide without friction

or air resistance through this tunnel. Show that such a vehicle wﬁi’f;w‘/'

if released at one end of the tunnel, fall back and forth between A

b and B, executing simple harmonic motion with period 2ma/R/g-
How many minutes will the round trip take? What is surprising

here is that this period does not depend on where A and B g,
or on the distance between them. Hint: Let the x-axis lie along
the tunnel, with origin at the point closest to the centre of the
earth. When the vehicle is at position with x-coordinate x (z), it
acceleration along the tunnel is the component of the gravitationy
acceleration along the tunnel, that is, —a(r) cos 8, where 6 is the
angle between the line of the tunnel and the line from the vehicle
to the centre of the earth.

+ 8.

(Search and Rescue) Two coast guard stations pick up
distress signal from a ship and use radio direction finders t
locate it, Station O observes that the distress signal is comipy
from the northeast (45° east of north), while station P, WhiChi:
100 miles north of station O, observes that the signal is Coming
from due east. Each station’s direction finder is accurate ty
within £3°.

(a) How large an area of the ocean must a rescue aircraft

search to ensure that it finds the foundering ship?

(b) If the accuracy of the direction finders is within ¢, how
sensitive is the search area to changes in ¢ when ¢ = 3%
(Express your answer in square miles per degree.}

- Figure 8.57 shows the graphs of the parametric curve

x = sint, y = %sin(Zt), 0 <t < 27, and the polar curve
#2 = cos(20). Each has the shape of an “co.” Which curve
is which? Find the area inside the outer curve and outside the

inner curve.
y

Figure 8.57




