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EXERCISES 4.3

Evaluate the limits in Exercises 1-32.

3x . In@x—3)
.l . 2. I
1 ;13}) tan4x a4
3. lim si'nax 4. Tim 1 —cosax
x—0 sinbx x—0 1 —cosbx
1 13 _1
sin”" X x
5. & 6. lim —=——
T x SR 2B 1
1 —cosx
. I t . Im —>¢
7. limxcotx , 8. Im G+
. 2 X
sin“ ¢ 10 —
9. lim — 10. lim ¢
t=>w t— T x—=0 X
3 1 -1
11, lim 22 12. Tim 20
som|2 T — 2X x—1 SInTX
1 e
13. Ym x sin— 14. Hm ;_c__s;n—x
xX—>00 X x—0 X
15. llmx-—sinx 16. li1112—)62—42cosx
=0 x —tanx x—=0 X
. 2 .
In
17. lim ——— 18. lm ——
x—0+ tanx — X r—>m/2 COSY
19. Tim sint 2. arccos x
t—m/2 1 x=1— x—1
21. lim x(2 tan~tx — 7) 92. lim (sect —tani)
X— 00 t—>(/2)—
. 1 1 . JE
23, lim |- —— 24. lim x
=0 \ [t te? x—=>0+
. sin® x . x 1
E125. lim (cscx) B26. lLim { — —
x—0+ s>l \x—1 Inx
3 sint — sin 3¢ i 1/x%
B2, him oo T2 E28. lm (ﬂ) ¥
10 3tant — tan 3t =0\ X

K31,
33.

34.

E3s.

o BSRTE T CE32 fim (1 + tan) !
x—>1— CSCTTX ' } x—>0
(A Newton quotient for the second derivative)
f(x+h)—2f(x)+f(x—h) if fisa

Evaluate limp—0 %

twice differentiable function.
If f has a continuous third derivative, evaluate

f(x+3h)—3f(x+h)+3f(x——h)—f(x—3h)
Hl’l/’—‘_‘__—/—____—‘.
h—0 PE

(Proof of the second PHopital Rule) Fill in the details of
the following outline of a proof of the second 1’Hopital Rule
(Theorem 4) for the case where a and L are both finite. Let

a < x <t < band show that there exists ¢ in (x, 1) such that

f@ —fO _f'©
) —g g0’

Now juggle the above equation algebraically into the form

19 1= L8 -1 (70-20 55)
1t follows that
51
< %% - L‘ ol (lf(t)\ +1g0) g% ) .

Now show that the right side of the above inequality can be
made as small as you wish (say less than a positive number
€) by choosing first' and then x close enough to a.

Remember, you are given that lime—sq+ ( fl©)/g (c)) =L

B129. lim (cos 267 €30, lim c;:; and limy a4 |g()| = 00
Extreme Values

The first derivative of a function is a source of much useful information about 0° 3
behaviour of the function. As we have already seen, the sign of f ’ tells us whether
is increasing or decreasing. In this section we use this information to find max
»nd minimum values of functions. In Section 4.8 we will put the techniques develop®
here to use solving problems that require finding maximum and minimum values-

" Maximum and Minimum Values

Recall (from Section 1.4) that a function has a maximum value at xo if f(x) = f (xo‘
for all x in the domain of f. ises 2
should call such a maximum value an absolute or global maximum because it15 74
Jargest value that f attains anywhere on its entire domain. 3

imul

The maximum value is f (xo)- To be more precis® ;
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Figure 424  f has munimum value 4 at which equals 0 only at
x=2 . .
singular points and only one C

" In Exercises 1-17, determine whether the given function has any
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Solution We have
lim f(x)=0° and lim f(x) = o0.
x—>0+ xXx—=>00

Since f(1) =35 < 0, Theorem 8 guarantees that f must have an absolute minimum
value at some point in (0, 00). To find the minimum value we must check the values

of f at any critical points or singular points in the interval. We have

, 4 x2—4 (x-2@x+2)
f@=l-g="p T 2

x =2and x = —2. Since f has domain (0, 00), it has no
itical point, namely, x = 2, where f has the value

f2) =4 This must be the minimum value of f on (0, 00). (See Figure 4.24.)
9

Let f(x) =% ¢—*". Find and classify the critical points of f,
evaluate limy—s 400 f(X): and use these results to help you sketch

EXAMPLE 6

the graph of f.

Solution f'(x) = e a- 2x2) = Oonlyif 1 — 2x% = O‘Since the exponential is
always positive. Thus, the critical points are :l:%. We have f (:i:%) = i:/%' f

is positive (or negative) when 1 — 2x?2 is positive (or negative). We summarize the

intervals where f is increasing and decreasing in chart form:

CP Ccp
—1/4/2 1/4/2
0 + 0
N min / max N\

Note that f(0) = 0 and that f is an odd function (f(—x) = —f(x)), s0 the graphis

symmetric about the origin. Also,

N 1 2
lim xe—xzz( lim —> ( lim %—) —0x0=0
x—£00 x—>E00 X x—>£00 g¥

because limx—+o0 x2 e =limy»coe " = 0 by Theorem 5 of Section 3.4. Since
f(x) is positive at X =1/ /2 and is negative at x = -1/ »/2, f must have absolute
maximum and minimum values by Theorem 8. These values can only be the valuqs
+1/+/2e at the two critical points. The graph is shown in Figure 4.25. The x-axis1s

Figure 4.25 The graph for Example 6 an asymptote as x — +o00.
v , —

EXERCISES 4.4

8. f(x)=x3+x—4on (a, b)

local or absolute extreme values, and find those values if possible. 9. f(x)= 5+ %3 +2x on (a, b]
1. f(x)=x+2o0n[-11] 2. f(x)=x+2on(—00,0] . | 1 )
3. f(x)=x+20n[—1,1j 4 fry=x>—1 10. f() =77 '11,‘ f(x)=;jon(01
5. (x) = x2 —1lon [—2, 3] 6. (x = x2 —1on (2, 3) ‘.
f f ) ( 12. f(x) = on [2, 3] 13. f(x) =|x— 1] on [,2, 2

7. f(x) =x>+x—4onfa,b] x—1



18.
20.
22.

24.

26.

28.
30.

32.
34.

36.
38.
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14. x> —x—2lon[-3,3] 15 f(x) = - In Exercises 41-46, determine whether the given function has
x*+1 absolute maximum or absolute minimum values. Justify your
16. f(x) = (x + 2)%/3 17. fx) =@ —2)3 answers. Find the extreme values if you can.
Tn Exercises 1840, locate and classify all local extreme values of 41. x 42. i
the given function. Determine whether any of these extreme Vx4 12 Vxt+1
values are absolute. Sketch the graph of the function. 5
Va4 —x2 _x
F) =22+ 2x 19. fG) =x*—3x—2 B xfhma W=
(x) = (x2 — 4)? 21. fx) =x3(x —1)2 ;
f ) ) ) ) §45. —— on (0, ) & 46. %
fE=x"x-1 23. fx)=x(x*—1) xsinx X
) 47. If a function has an absolute maximum value, must it have
o) = —— 25. f(x) = * any local maximum values? If a function has a local
x?+1 x2+1 maximum value, must it have an absolute maximum value?
X Give reasons for your answers.
x) = —— 27. f(x)=x+v2—x2
1@ Vxt+1 48. If the function f has an absolute maximum value and
F(x) =x +sinx 20, f(x) =x —2sinx g(x) = | f(x)|, must g have an absolute maximum value?
Justify your answer. ’
oy — 2 tan~] e — il
fO)=x—2tan""x 3L fx) =2x —sin™ x E149. (A function with no max or min at an endpoint) Let
—x2/2 —x
fx)=e =/ 33. fx)y=x2
1
1 . ol .
Fo) =xte™ 35. f(x) = — f(x)=[“mx o x>0
X 0 ifx=0.
F@)y=lx+1] 37. f(x) =1 -1
) . Show that f is continuous on [0, 00) and differentiable on
f(x) = sin x| 39. f(x) = |sinx] (0, oo) but that it has neither a local maximum nor a local
. fx)=(x — —(x+ minimum value at the endpoint x = 0.
fE) =G -0 — @+ D> inimum value at the endpoint x = 0

&40

Concavity and Inflections

DEFINITION

3

Like the first derivative, the second derivative of a function also provides useful infor-
mation about the behaviour of the function and the shape of its graph: it determines
whether the graph is bending upward (i.e., has increasing slope) or bending downward
(i.e., has decreasing slope) as we move along the graph toward the right.

We say that the function f is concave up on an open interval / if it is differentiable
there and the derivative f’ is an increasing function on /. Similarly, f is concave
down on I if f’ exists and is decreasing on /.

The terms “concave up” and “concave down” are used to describe the graph of the
function as well as the function itself.

Note that concavity is defined only for differentiable functions, and even for those,
only on intervals on which their derivatives are not constant. According to the above
definition, a function is neither concave up nor concave down on an interval where
its graph is a straight line segment. We say the function has no concavity on such an
interval. We also say a function has opposite concavity on two intervals if it is concave
up on one interval and concave down on the other.

The function f whose graph is shown in Figure 4.26 is concave up on the interval
(a, b) and concave down on the interval (b, c).

Some geometric observations can be made about concavity:

(i) If f is concave up on an interval, then, on that interval, the graph of f lies above
its tangents, and chords joining points on the graph lie above the graph.



2.4e7%)

S

Figure 4.33  The critical points of

fx) = x2e~

X
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Solution We begin by calculating the first two derivatives of f:
fly=Q2x—xDe*=xQ—x)e*=0 atx=0andx =2,

Fx) = @2 —4x +xPe™*
=20, f@= ~2¢%2 < 0.

Thus, f has alocal minimum value at x = 0 and a local maximum value at x = 2. See
Figure 4.33.

L
For many functions the second derivative is more complicated to calculate than the first
derivative, so the First Derivative Test is likely to be of more use in classifying critical
points than is the Second Derivative Test. Also note that the First Derivative Test can.
classify local extreme values that occur at endpoints and singular points as well as at
critical points.

It is possible to generalize the Second Derivative Test to obtain a higher derivative
test to deal with some situations where the second derivative is zero at a critical point.
(See Exercise 40 at the end of this section.)

EXERCISES 4.5

Tn Exercises 1-22, determine the intervals of constant concavity

of the given function, and locate any inflection points.

36.

Let f(x) =x%ifx > 0and f(x) = —x?ifx <0.IsOa
critical point of £? Does f have an inflection point there? Is
f"(0) = 0? If a function has a nonvertical tangent line at an

2
L fo) =+ 2. fa)=2x—x inflection point, does the second derivative of the function
3. f(x) =x*+2x +3 4. f(x)=x—x necessarily vanish at that point?
4
5.-f(x) = 10x3 — 3x° 6. f(x)=10x> +3x° E337. Verify that if f is concave up on an interval, then its graph
23 22 lies above its tangent lines on that interval. Hint: Suppose f
T fx) =@ —x) 8. f(x)=@2+2x—x7) is concave up on an open interval containing xo. Let
4
9, — (2 _ay3 : . __* -~ h(x) = f(x) — f(xo) — f'(x0)(x — x0). Show that & has a
fo)=6"=4) . 10. f() x2+3 local minimum value at xo and hence that #(x) > 0 on the
1. f(x) =sinx 12. f(x) = cos3x o interval. Show that 2(x) > 0if x # xo.
. . 38. Verify that the graph y = f(x) crosses its tangent line at an
13- = — — (=3
fx)=x+sin2x 14. f(x)=x—2sinx. inflection point. Hint: Consider separately the cases where
15, fx)=tan"'x 16. f(x)=x¢é" the tangent line is vertical and nonvertical.
. In(x?) 39, Let f,(x) = x" and go(x) = —x", (n =2,3,4,...).
17. fx) =™ 18. f(x) = o Determine whether each function has a local maximum, a
19. ¢ ) ) ) local minimum, or an inflection point at x = 0.
I = n3(1 +x9 20. f@@) = (nx) §140. (Higher Derivative Test) Use your conclusions from
2L fx) = o 4x% £ 12x — 25 Exe.rcis'e 39 to suggest a.generalization of the Second
o 3 3 Derivative Test that applies when
“ f@) =(x - DP+ x+ D
. Discuss the concavity of the linear function fxo)=f'x)=...=f ®=D(x0) =0, f®(x0) #0,
f(x) = ax + b. Does it have any inflections?
ssify the critical points of the functions in Exercises 24-35 for some k& > 2.
g the Second Derivative Test whenever possible. §141. This problem shows that no test based solely on the signs of

fx)=3x% —36x -3 25, f)=x(x—2%+1

derivatives at xo can determine whether every function with a
critical point at xo has a local maximum or minimum or an

f (x) =x 4 - 27. f(x) — 3 % inflection point there. Let
X — 2 .
O3 mpwe S P
) =xe* 31, f(x) =xInx ,
=2 42 3. F) = (2 — 4 Prow? the follo_wmg:
. (2) limgsox " f(x) =0forn=0,1,2,3,....
= = 3)e* 35. f(x) = x% > (b) limy_o P(1/x) f(x) = O for every polynomial P.
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() Forx #0, fO@) = B(1/x)f)k=1,2,3,...), considering the following function:

where Py is a polynomial.

(k) i = 1 .

(@) f*(0) exists and equals Ofork=1,2,3,.... . fo) = 2sin~ ifx 0
(e) f has alocal minimum atx = 0; — f has alocal x Fx=0

maximum at x = 0. -
® ?f g(x) = xf(x), then g ®© 0 = 0 ttor every positive Show that f/(0) = £(0) = 0, so the x-axis i tangeﬁt to the

‘ integer k and g has an inflection point at x = 0. graph of f atx = 0; but f'(x) is not continuous at x = 0, so
42. A function may have neither a local maximum nor a local £7(0) does not exist. Show that the concavity of f is not

minimum nor an inflection at a critical point. Show this by constant on any interval with endpoint 0.

Sketching the Graph of a Function

When sketching the graph y = f(x) of a function f, we have three sources of useful
information:
(i) the function f itself, from which we determine the coordinates of some points on

the graph, the symmetry of the graph, and any asymptotes;

(ii) the first derivative, f', from which we determine the intervals of increase and
decrease and the location of any local extreme values; and

(iii) the second derivative, f”, from which we determine the concavity and inflection
points, and sometimes extreme values.

Ttems (ii) and (iii) were explored in the previous two sections. In this section we
consider what we can learn from the function itself about the shape of its graph, and
then we illustrate the entire sketching procedure with several examples using all three
sources of information.

We could sketch a graph by plotting the coordinates of many points on it and
joining them by a suitably smooth curve. This is what computer software and graphics
calculators do. When carried out by hand (without a computer or calculator), this
simplistic approach is at best tedious and at worst can fail to reveal the most interesting
aspects of the graph (singular points, extreme values, and so on). We could also
compute the slope at each of the plotted points and, by drawing short line segments
through these points with the appropriate slopes, ensure that the sketched graph passes
through each plotted point with the correct slope. A more efficient procedure is 1€
obtain the coordinates of only a few points and use qualitative information from the
function and its first and second derivatives to determine the shape of the graph betweel
these points.

Besides critical and singular points and inflections, 2 graph may have other “in
teresting” points. The intercepts (points at which the graph intersects the coordinat

axes) are usually among these. When sketching any graph it is wise to try O find
all such intercepts, that is, all points with coordinates (x, 0y and (0, y) that lie on ﬂ}f
graph. Of course, not every graph will have such points, and even when they do ex8
it may not always be possible to compute them exactly. Whenever a graph is mad
up of several disconnected pieces (called components), the coordinates of at least 0"
point on each component must be obtained. It can sometimes be useful to determi®
the slopes at those points too. Vertical asymptotes (discussed below) usually break t
graph of a function into components. v

Realizing that a given function possesses some symmetry can aid greatly in obta?
ing a good sketch of its graph. In Section P.4 we discussed odd and even functions
observed that odd functions have graphs that are symmetric about the origin, while®
functions have graphs that are symimetric about the y-axis, as shown in Figure ™.
These are the symmetries you are most likely to notice, but functions can have © ‘e"
symmetries. For example, the graphof 2+ (x — 1)2 will certainly be symmetfic a O




SECTION 4.6: Sketching the Graph of a Function ~ 251

EXAMPLE §  Sketch the graph of f(x) = (x* — 1)*/°. (See Figure 4.42.)

. 4 x 4 x2-3

Solution f'(x)= - —————, Mx) = — — =
FO=3@prm P 5mnn

From f: Domain: all x.
Asymptotes: none. (f(x) grows like x*/~ as x — =£00.)
Symmetry: about the y-axis (f is an even function).
Intercepts: (%1, 0), (0, 1).

From f’: Critical points: x = 0; singular points: x = =£1.

From f: f"(x) = 0 atx = £+/3; points (£+/3, 22/3) ~ (£1.73, 1.59);
F”(x) not defined at x = £1.

4/3

SP . Cp SP
x —/3 -1 0 1 V3
il - ~ undef + O — undef + +
i + 0 — undef — — undef — 0 +
f N \\ min  max Y\, min P
N2 infl ~ ~ —~ ~ infl ~—

EXERCISES 46 = -

1. Figure 4.43 shows the graphs of a function f, its two 3. Figure 4.44 shows the graphs of four functions:
derivatives f’ and f”, and another function g. Which graph
corresponds to each function? 3
x
2. List, for each function graphed in Figure 4.43, such fx) = 1 7 gx) = ﬁ,
—x —x

information that you can determine (approximately) by
inspecting the graph (e.g., symmetry, asymptotes, intercepts, x3 —x
intervals of increase and decrease, critical and singular h(x) = [ s ’
points, local maxima and minima, intervals of constant 41
concavity, inflection points).

3

X
k(x) = ———.
VIt =1

Which graph corresponds to each function?

4. Repeat Exercise 2 for the graphs in Figure 4.44.

. (a) y4: (b) }2 y (a) Y4 (b)
: “‘—ﬁ}- | | 2}/ ’J

‘5‘4‘3‘2—_11 5 A i e s-4-32-f] 123 4x ~5—4-3-2f ]
" =27 ~21 ol 1

w

o W

-t

2
-3 —
_431 4 34 34
sl —al L4l
@ % © v @ v
3} 3
3
5 2t 2
1 1 f-

N

(55

. 2 2 3 4x —5-4-N2 -~ 12 3 4x —5-4-3-2-1/] 1 T x —5—4-3-2 1 2 3 44
[ —+ -2

-5 4l
Figure 4.43 Figure 4.44
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Tn Exercises 5-6, sketch the graph of a function that has the given
properties. Identify any critical points, singular points, local
maxima and minima, and inflection points. Assume that f is
continuous and its derivatives exist everywhere unless the
contrary is implied or explicitly stated.

5. f(O)=1,fED=0 f(@ =1, imxz—o0 fx) =2,
limy— —00 f(X) =—1, f'(x) > 0on (=00, 0) and on
(1, 00), f'(x) <0on (0, 1), f"(x) > 0 on (=00, 0) and on
(0,2), and f"(x) <Oon 2, 00).

6. f(-1)=0,fO =2 D=1 f@=0,f3=1
limys oo () +1—x) =0, f'(x) > Oon (=00, —1),
(~1,0) and (2, 00), f/(x) <0on(0,2),
limgs—1 f'(x) = 00, F7(x) > 0 on (—00, —1) and on
(1,3),and f"(x) < 0on (—1, 1) and on (3, ©0).

In Exercises 739, sketch the graphs of the given functions,
making use of any suitable information you can obtain from the
function and its first and second derivatives.

7. y= (x% — 13 8. y= x(x? — 1?2

9. y:z;x 10. y=i;i
13.'y=2__1x2 14. y:x;:l
15. y = x;‘i - 16. y = xzxil
17. 5= xzx-3!—1 18. y= xzxj—l

23.

25.

217.

29.
31.

33.
35.

37.

39.
§140.

41.

2 _
=t 20.
x+1
X3 —4x
= 22.
YET
5
x
= 24.
YT w12
= 6.
VT Tax 2
3_ 4,2
yor o 28.
x
y=x+2sinx 30.
y = xe* 32.
y=x2e™ 34.
y:lﬂ, (x>0) 36.
x
I 38
7 A —x? )
y=@2 -

What is limg— 0+ x Inx? lime—0X In|x]? If f(x) =xInlx]
for x # 0, is it possible to define f
continuous on the whole real line? Sketch the graph

I e——

_x2-2
|

_x2—1
y= 22

_@-x?
Y=

_ x
YT rx—2
y=2x+sinx

2
—X

y=¢
y=e*sinx, (x = 0)

y =xzex

Inx
y=—5: x>0
x

x
7= VX241

of f.

sinx

What straight line is an asymptote of the curve y = T30
x

At what points does the curve cross this asymptote?

Graphing with Computers

The techniques for sketching,
functions that are simple enough to
testing

They are also essential for

painless activity, but sometimes
Knowledge of the function, from techniqu

developed in the previous sec
allow you to calculate an
the validity of graphs produced by co
calculators, which can be inaccurate or misleading for a variety of reasons,
the case of numerical
casiest to first produce a graph
times this will not turn out to be

you on what the next steps must be.

The Maple command’

of Section 4.6, together with
plotting; we ask Maple to plot both
> plot ({(x"2+2*x+4) / (2%x),
This command sets the window —6 < x = 6and —7 <y < 7. Why that wind!
get a plot that characterizes the fun
is essential. (If x — 10 were subs

for viewing the graph of the func
its oblique asymptote, is a straightforward €x
(x? +2x +4)/(2x) and 1 + (x/2)-

1+(x/2)}, %=-6..6, y="7--

1 Although we focus on Maple to illustrate the issues of graphing with computer

presented are general ones, pertaining to all software and computers.

using a computer or grap
the last step. (We will use the term “co
both computers and calculators.) For many simple functions this can be a quick and
functions have properties that complicate
es like those above, is important

ction, knowledge of its vertic
tituted for x in the expression, the g

tion, are useful for graphs of
d analyze their derivatives.
mputers Of
including
monsters introduced in previous chapters. In practice, itis often
hing calculator, but many
mputer” fof

tion from Example

7) i

al asymptote at * =
jven wint?

i
S, the issuve'sf’

(0) in such a way that f is

the process:
to guide

ample ©

ow? T
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Square Packing:
each disk uses up a square

Hexagonal Packing: )
each disk uses up a hexagon

Figure 454 Square and hexagonal
packing of disks in a plane

Figure 4.55 Running and swimming to
. getfrom Ato B

Remark Modifying Example 4 Given the sparse information provided in the state-
ment of the problem in Example 4, interpretations (i) and (ii) are the best we can do.
The problem could be made more meaningful economically (from the point of view,
say, of a tin can manufacturer) if more elements were brought into it. For example:

(a) Most cans use thicker material for the cylindrical wall than for the top and bottom
disks. If the cylindrical wall material costs $A per unit area and the material for
the top and bottom costs $B per unit area, we might prefer to minimize the total
cost of materials for a can of given volume. What is the optimal shape if A=2B?

(b) Large numbers of cans are to be manufactured. The material is probably being cut
out of sheets of metal. The cylindrical walls are made by bending up rectangles,
and rectangles can be cut from the sheet with little or no waste. There will,
however, always be a proportion of material wasted when the disks are cut out.
The exact proportion will depend on how the disks are arranged; two possible
arrangements are shown in Figure 4.54. What is the optimal shape of the can ifa
square packing of disks is used? A hexagonal packing? Any such modification of
the original problem will alter the optimal shape to some extent. In “real-world”
problems, many factors may have to be taken into account to come up with a “best”
strategy.

(c) The problem makes no provision for costs of manufacturing the can other than
the cost of sheet metal. There may also be costs for joining the opposite edges of
the rectangle to make the cylinder and for joining the top and bottom disks to the
cylinder. These costs may be proportional to the lengths of the joins.

In most of the examples above, the maximum or minimum value being sought occurred
at a critical point. Our final example is one where this is not the case.

m A man can run twice as fast as he can swim. He is standing at point
_EARWMTEE ¥ Aontheedgeofa circular swimming pool 40 m in diameter, and
he wishes to get to the diametrically opposite point B as quickly as possible. He can
run around the edge to point C, then swim directly from C to B. Where should C be
chosen to minimize the total time taken to get from A to B?

Solution Tt is convenient to describe the position of C in terms of the angle AOf
where O is the centre of the pool. (See Figure 4.55.) Let & denote this angle. Cl¢#
0<f<m (If6=0, the man swims the whole way; if @ = 7, he runs the WhO
way.) The radius of the pool is 20 m, 0 arc AC = 208. Since angle B oc=7"
we have angle BOL = (w — 9)/2 and chord BC = 2BL = 40sin((7 — 9)/2)-

. t
Suppose the man swims at a rate k m/s and therefore runs at a rate 2k m/S: I
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Square Packing:
each disk uses up a square

Hexagonal Packing: .
each disk uses up a hexagon

Figure 454 Square and hexagonal
packing of disks in a plane

Figure 4.55 Running and swimming to
. getfrom Ato B

Remark Modifying Example 4 Given the sparse information provided in the state-
ment of the problem in Example 4, interpretations (1) and (ii) are the best we can do.
The problem could be made more meaningful economically (from the point of view,
say, of a tin can manufacturer) if more elements Were brought into it. For example:

(a) Most cans use thicker material for the cylindrical wall than for the top and bottom
disks. If the cylindrical wall material costs $A per unit area and the material for
the top and bottom costs $B per unit area, we might prefer to minimize the total
cost of materials for a can of given volume. What is the optimal shape if A=2B?

(b) Large numbers of cans are to be manufactured. The material is probably being cut
out of sheets of metal. The cylindrical walls are made by bending up rectangles,
and rectangles can be cut from the sheet with little or no waste. There will,
however, always be a proportion of material wasted when the disks are cut out.
The exact proportion will depend on how the disks are arranged; two possible
arrangements are shown in Figure 4.54. What is the optimal shape of the can if a
square packing of disks is used? A hexagonal packing? Any such modification of
the original problem will alter the optimal shape to some extent. In “real-world”
problems, many factors may have to be taken into account to come up with a “best”
strategy.

(c) The problem makes no provision for costs of manufacturing the can other than
the cost of sheet metal. There may also be costs for joining the opposite edges of
the rectangle to make the cylinder and for joining the top and bottom disks to the
cylinder. These costs may be proportional to the lengths of the joins.

In most of the examples above, the maximum or minimum value being sought occurred
at a critical point. Our final example is one where this is not the case.

—Em A man can run twice as fast as he can swim. He is standing at point
_EARNMYLE ©  Aontheedgeofa circular swimming pool 40 m in diameter, and
he wishes to get to the diametrically opposite point B as quickly as possible. He can
run around the edge to point C, then swim directly from C to B. Where should Cbe

chosen to minimize the total time taken to get from A to B?

Solution 1t is convenient to describe the position of C in terms of the angle A0
where O is the centre of the pool. (See Figure 4.55.) Let 6 denote this angle- Cleat
0<6<m. (If6 =0, the man swims the whole way; if 6 = 7, he runs the Wh
way.) The radius of the pool is 20 m, so arc AC = 200. Since angle B oc=7"

we have angle BOL = (7 — 6)/2 and chord BC =2BL =40 sin((rc - 9)/2)'
Suppose the man swims at a rate k m/s and therefore runs at a rate 2% wfs. X



e

270

CHAPTER 4 More Applications of Differentiation

Solution For f(t) = t'/*, we have
1

For 25 < t < 26, we have '@ < 0,0 J26 = f(26) < L(26) = 5.1. Also,
302 5 2532 = 125,50 | f7 ()] < (1/H)(1/125) = 1/500 and ‘

11 , 1
E@6)| < 5 % 555 % @625 = 7500 = 0.001.

" Therefore, f(26) > L(26) — 0.001 = 5.099, and /26 is in the interval (5.099,5.1).

Remark We can use Corollary C of Theorem 11 and the fact that V26 < 5.1 to
find a better (i.e., smaller) interval containing /26 as follows. If 25 <t < 26, then
125 = 2532 < 13/ < 263/ < 5.1°. Thus

M=

1
_ ") < =N
R IA ERE

M+ N 1 1 1 _
26~ =51-- ~ .
26 ~ L(26) + 7 5 4<4x125+4x5.13> 5.099 0288

N-M _1( 1 1100000288
) 16

|Error| < —5—.1—3 + 25

Thus ~/26 lies in the interval (5.099 00, 5.099 06).

EXAMPLE 5 Use a suitable linearization to find an approximate value for

cos36° = cos(rr/5). Is the true value greater than or less than
your approximation? Estimate the size of the error, and give an interval that you can
be sure contains cos(36°).

Solution Let f(t) = cost, so that f/(t) = —sint and f "(t) = — cost. The value of
a nearest to 36° for which we knowcosaisa =30°=m /6, s0 we use the linearization
about that point:

L(x)=cos%—sin%<x—%)=—?—%(x—%).

Since (7/5) — (n/6) =7/ 30, our approximation is

cos3ee meos =~ L (T) = 5 - 5 (55) =0s1267

If (r/6) < t < (/5), then f"(t) <Oand | F7(t)| < cos(m/6) = /3/2. Therefor®,
cos36° < 0.81367 and

L VE(Ey:

EG6)| < (%) < 0.00475. _
Thus, 0.81367 — 0.00475 < cos36° < 0.81367, so cos36° lies in the intef"al:
(0.808 92, 0.81367). I:

‘/.

Remark The error in the linearization of f (x) about x = a can be interpreted
terms of differentials (see Section 2.7 and the beginning of this section) as follows- I}g
Ax = dx = x — a, then the change in f(x) as we pass fromx =atox = at”ey
is fa+Ax)— f (a) = Ay, and the corresponding change in the linearizatio? L (}%
is f'@)(x —a) = f(@dx, which is just the value at x = a of the diffefenn.%
dy = f'(x)dx. Thus !

E(x) = Ay —dy.
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Solution Write the Taylor formula for o* at x = 0 (from Table 5) with n replaced by
2n + 1, and then rewrite that with x replaced by —x. We get

2 x3 x2n x2n+1

x X 2n+2
=1 I I TR ,
F=1+xty gt gt e =)
xZ x?: x2n x2n+1
X =1 —_—— — — 0 2n+2
¢ TR TR oY ont D T (=)
as x — 0. Now average these two to get
& +eF x2  x* x2" 242
coshx=’2——=1+§+ﬂ+~--+(2n)! O(x )

as x — 0. By Theorem 13 the Maclaurin polynomial P2, (x) for coshx is

2 4 x2n

X X
Po(x) =14 et ook
() =14 o7+ 7+ T g

Obtain the Taylor polynomial of order 3 for ¢2* about x = 1 fron
the corresponding Maclaurin polynomial for ¢* (from Table 5).

EXAMPLE 7

Solution Writing x = 1 + (x — 1), we have

2% = 22D = 220D

22(x — 1)% 23(x —1)°
=e2[1+2(x—1)+ 5 + 3 +O((x—1)4)]

as x — 1. By Theorem 13 the Taylor polynomial P3(x) for ¢2* at x = 1 must be

4¢% .
Px) = & + 264 (x — ) +2¢7(x — P + —;—oc — 13

—4

—E—XKWE—S— Use the Taylor formula for In(1 + x) (from Table 5) to find th
_EARNWTRE™ ®  Taylor polynomial Ps (x) for Inx aboutx = e. (This provides 2
alternative to using the definition of Taylor polynomial as was done to solve the sau
problem in Example 1(b).

Solution Wehavex = e+ (x —e) = e(1+1) wheret = (x — e)je. Asx — €V
have t — 0, so

2 1
lnx =lne+n(l+7)=le+i—>5+7 +0@h

x—e 1(x—e\’ 1 /x—e\ 4
=1+— —5( ; > +§< ; > +0(x—e).

Therefore, by Theorem 13,
x—e 1 (x—e 2 1 /x—e 3
P3(x)=1+ - = + = .
e 2 e 3 e

Evaluating Limits of Indeterminate Forms |
Taylor and Maclaurin polynomials provide us with another method for evalua®
limits of indeterminate forms of type [0/0]. For some such limits this method ¢2*
considerably easier than using ’Hbpital’s Rule.
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In Exercises 1520, write the indicated case of Taylor’s formula
for the given function. What is the Lagrange remainder in each
case?

15.
16.
17.

18.

19.
20.

f(x) =sinx, a=0,n=7
f(x) = cosx, a=0,n=6
f(x) =sinx, a=m/4, n=4

fo) =1
—X
f(x) =Inx, a=1,n=6
f(x) =tanx, a=0,n=3

a=0,n=26

Find the requested Taylor polynomials in Exercises 21-26 by
using known Taylor or Maclaurin polynomials and changing
variables as in Examples 6-8.

21.
22.

23.

24,
25.
26.
27.
28.
29.

30.

31

P5(x) for e3* about x = —1.
Py(x) for e"‘2 about x = 0.

. 9 . . o 1 — cos(2x)
P4 (x) for sin” x about x = 0. Hint: sin“x = —

P5(x) for sinx aboutx = 7.

Ps(x) for 1/(1 +2x%) about x =0

P3(x) for cos(3x — ) about x = 0.

Find all Maclaurin polynomials P, (x) for f(x) = x3.

Find all Taylor polynomials P, (x) for f(x) = atx =1
Find the Maclaurin polynomial Py,+1 (x) for sinhx by
suitably combining polynomials for ¢* and e™*.

By suitably combining Maclaurin polynomials for In(1 + x)
and In(1 — x), find the Maclaurin polynomial of order2n +1

for tanh~! (x) = L (%),
2 1—x

Write Taylor’s formula for f(x) = e~* witha = 0, and use
it to calculate 1/e to 5 decimal places. (You may use a
calculator but not the e* function on it.)

E32.

33.

34,

35.

Write the general form of Taylor’s formula for f(x) = sinx
at x = 0 with Lagrange remainder. How large need n be
taken to ensure that the corresponding Taylor polynomial
approximation will give the sine of 1 radian correct to

5 decimal places?

What is the best order 2 approximation to the function

F(x) = (x — 1)? at x = 07 What is the error in this
approximation? Now answer the same questions for

g(x) = x* + 2x% + 3x + 4. Can the constant 1 /6 =1/3!in
the error formula for the degree 2 approximation, be
improved (i.e., made smaller)?

By factoring 1 — %"+ (or by long division), show that
1 ) xn+1
xS+ .
1—=x 1—x

Next, show that if |x| < K <1, then

xn+1 1

< ____\xn-i-l\.
—1-K

1—x

This implies that x*1/(1 —x) = O(x"*1) as x — 0and
confirms formula (d) of Table 5. What does Theorem 13 the
say about the nth-order Maclaurin polynomial for 1/(1 —x)

By differentiating identity (*) in Exercise 34 and then
" replacing n withn + 1, show that - ~
_ _—_1+2.x+3x2+;--.+(n+1)x"
(1—x)?

n+2- (A DE
—_— X .
(1 -x)?

Then use Theorem 13 to determine the nth-order Maclaurir
polynomial for 1/(1 — x)2.

—

Roundoff Error, Truncation Error, and Computers

In Section 4.7 we introduced the idea of roundoff error, while in Sections 4.9 and 4.

we discussed the result of approximating a function by its Taylor polynomials. T
resulting error here is known as truncation error. This conventional terminology 1
be a bit confusing at first because rounding off is itself a kind of truncation of the digt
representation of a number. However in numerical analysis “truncation” i8 reserved
discarding higher order terms, typically represented by big-0, often leaving 2 Tay

polynomial.

Truncation error is a crucial source of error in using computers to do mather
ical operations. In computation with computers, many of the mathematical functc
and structures being investigated are approximated by polynomials in order to m?

it possible for computers to

manipulate them. However, the other source of &

roundoft, is ubiquitous, so it is inevitable that mathematics on computers has to invo

consideration of both sources of error. These sources can sometimes be tred

ted i

pendently, but in other circumstances they can interact with each other in fascinat

ways. In this secti
Numerical Monster:

on we look at some of these fascinating interactions in the for;ﬂ
. . . |
s using Maple. Of course, as stated previously, the issues cone

all calculation on computers and not Maple in particular.
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CHAPTER REVIEW |

Key Ideas
« What do the following words, phrases, and statements
mean?
o critical point of f o singular point of f
o inflection point of f ‘
o f has absolute maximum value M

<&

<&
<&
<
<&
<&
<

<

<

f has a local minimum value at x = ¢
vertical asymptote & horizontal asymptote
oblique asymptote & machine epsilon

the linearization of f(x) aboutx =a

the Taylor polynomial of degree 7 of f(x) aboutx =a

Taylor’s formula with Lagrange remainder
fx)= 0<(x —a)”) asx — a
arootof f(x)=0

an indeterminate form

o a fixed point of f(x)
o I’Hopital’s Rules

« Describe how to estimate the error in a linear (tangent
line) approximation to the value of a function.

« Describe how to find a root of an equation f (x) = 0 by
using Newton’s Method. When will this method work
well?

Review Exercises

1.

2.

If the radius r of a ball is increasing at a rate of 2 percent per
minute, how fast is the volume V of the ball increasing?

(Gravitational attraction) The gravitational attraction of
the earth on a mass m at distance r from the centre of the earth
is a continuous function of r forr = 0, given by

RZ
Fz{mgz ifr > R

-

mkr if0<r <R,
where R is the radius of the earth, and g is the acceleration
due to gravity at the surface of the earth.

(a) Find the constant % in terms of g and R.

(b) F decreases as m moves away from the surface of the
earth, either upward or downward. Show that F de-
creases as r increases from R at twice the rate at which
F decreases as r decreases from R.

. (Resistorsin parallel) Two variable resistors R; and Ry are

connected in parallel so that their combined resistance R is
given by

11 n 1

R R Ry’
At an instant when Ry = 250 ohms and R, = 1000 ohms, R1
is increasing at a rate of 100 ohms/min. How fast must Ry be
changing at that moment (a) to keep R constant? and (b) to
enable R to increase at a rate of 10 ohms/min?

. (Gas law) The volume V (in m?), pressure P (in kilopascals,

kPa), and temperature T (inkelvin, K) fora sample of a certain

gas satisfy the equation pV =5.0T.

(a) How rapidly does the pressure increase if the temperature
is 400 K and increasing at 4 K/min while the gas is kept
confined in a volume of 2.0 m3?

(b) How rapidly does the pressure decrease if the volume is
2 m3 and increases at 0.05 m>/min while the temperature
is kept constant at 400 K?

5. (The size of a print run) It costs a publisher $10,000

to set up the presses for a print run of a book and $8 to
cover the material costs for each book printed. In addition,
machinery servicing, labour, and warehousing add another
$6.25 x 1077x? to the cost of each book if x copies are
manufactured during the printing. How many copies should
the publisher print in order to minimize the average cost per
book?

6. (Maximizing profit) A bicycle wholesaler must pay the

manufacturer $75 for each bicycle. Market research tells the
wholesaler that if she charges her customers $x per bicycle,
she can expect to sell N (x) =45x 108 /x2 of them. What
price should she charge to maximize her profit, and how many
bicycles should she order from the manufacturer?

7. Find the largest possible volume of a right-circular cone that

can be inscribed in a sphere of radius R.

8. (Minimizing production costs) The cost $C (x) of produc-

tion in a factory varies with the amount x of product manufac-
tured. The cost may rise sharply with x for x small, and more
slowly for larger values of x because of economies of scale.
However, if x becomes too large, the resources of the factory
can be overtaxed, and the cost can begin to rise quickly again.
Figure 4.70 shows the graph of a typical such cost function

C(x).

C

= (5, C())

_.~" slope =

= average cost

-

X

Figure 4.70

If x units are manufactured, the average cost per unit
$C(x)/x, which is the slope of the line from the origin
the point (x, C (x)) on the graph.

(a) Ifit is desired to choose x to minimize this average 0
per unit (as would be the case if all units produced cou
be sold for the same price), show that x should be chos!
to make the average cost equal to the marginal cost:

C—(fz = C'(x).

(b) Interpret the conclusion of () geometn'cally in the 8"

. 6
(¢) If the average cost equals the marginal cost f0r som

does x pecessarily minimize the average cost?
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CHAPTER REVIEW

Key Ideas (b) How rapidly does the pressuge decrease if the volume is
+ What do the following words, phrases, and statements 2 m3 and increases at 0.05 m*/min while the temperature
mean? is kept constant at 400 K? _

5. (The size of a print rumn) It costs a publisher $10,000

¢ critical point of f

o singular point of f

o inflection point of f
o f has absolute maximum value M

o

o
o
o the linearization of f(x) aboutx = a
o
o

f has a local minimum value at x = ¢
vertical asymptote & horizontal asymptote
oblique asymptote © machine epsilon

the Taylor polynomial of degree n of f(x) aboutx =a

Taylor’s formula with Lagrange remainder

o fx)= O((x——a)”) asx —> a

o axootof f(x)=0

o an indeterminate form

& a fixed point of f(x)

© 1"'Hopital’s Rules

Describe how to estimate the error in a linear (tangent
line) approximation to the value of a function.

Describe how to find a root of an equation f(x) =0 by
using Newton’s Method. When will this method work
well?

Review Exercises

1

2.

. If the radius r of a ball is increasing at a rate of 2 percent per

minute, how fast is the volume V of the ball increasing?

(Gravitational attraction) The gravitational attraction of
the earth on a mass m at distance r from the centre of the earth
is a continuous function of r for 7 = 0, given by

R2
Fz{mg ifr > R

72
mkr ifo0<r <R,

where R is the radius of the earth, and g is the acceleration

due to gravity at the surface of the earth.

(a) Find the constant k in terms of g and R.

(b) F decreases as m Imoves away from the surface of the
earth, either upward or downward. Show that F de-
creases as 7 increases from R at twice the rate at which
F decreases as r decreases from R.

3. (Resistorsin parallel) Two variable resistors Ry and Ry are

connected in parallel so that their combined resistance R is
given by

1 1 1

- — =

R R Ry
At an instant when Ry = 250 ohms and Ry = 1000 ohms, R;
is increasing at a rate of 100 ohms/min. How fast must R> be
changing at that moment (a) to keep R constant? and (b) to
enable R to increase at a rate of 10 ohms/min?

4. (Gas law) The volume V (in m?), pressure P (in kilopascals,

kPa), and temperature T (inkelvin, K) fora sample of a certain
gas satisfy the equation pV = 5.0T.
(2) How rapidly does the pressure increase if the temperature

is 400 K and increasing at 4 K/min while the gas is kept
confined in a volume of 2.0 m3?

to set up the presses for a print run of a book and $8 to
cover the material costs for each book printed. In addition,
machinery servicing, labour, and warehousing add another
$6.25 x 10-7x2 to the cost of each book if x copies are
manufactured during the printing. How many copies should
the publisher print in order to minimize the average cost per
book?

6. (Maximizing profit) A bicycle wholesaler must pay the
manufacturer $75 for each bicycle. Market research tells the
wholesaler that if she charges her customers $x per bicycle,
she can expect to sell N(x) = 4.5 X 106/x2 of them. What
price should she charge to maximize her profit, and how many
bicycles should she order from the manufacturer?

7. Find the largest possible volume of a right-circular cone that
can be inscribed in a sphere of radius R.

8. (Minimizing production costs) The cost $C (x) of produc-
tion in a factory varies with the amount x of product manufac-
tured. The cost may rise sharply with x for x small, and more
slowly for larger values of x because of economies of scale.
However, if x becomes t00 large, the resources of the factory
can be overtaxed, and the cost can begin to rise quickly again.
Figure 4.70 shows the graph of a typical such cost function
C(x).

C

(%, C()

7 C(x)

_.~" slope = —— = average cost
x

S 4

X

Figure 4.70

If x units are manufactured, the average cost per unit j
$C(x)/x, which is the slope of the Jine from the origin !
the point (x, C(x)) on the graph.

(a) If it is desired to choose x to minimize this average C0
per unit (as would be the case if all units produced coul
be sold for the same price), show that x should be chost
to make the average cost equal to the marginal cost

€& _ C'(x).
x

(b) Interpret the conclusion of (a) geometrically in the fig"

. %
(¢) If the average cost equals the marginal cost for sor

does x necessarily minimize the average cost?
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Suppose that the fraction of individuals in the population
infected with the virus is p, so the fraction uninfected is
g = 1 — p. The probability that a given individual is un-
affected is g, so the probability that all x individuals in a
group are unaffected is ¢*. Therefore, the probability that a
pooled sample is infected is 1 — g*. Each group requires one
test, and the infected groups require an extra x tests. Therefore
the expected total number of tests to be performed is

N N 1
T=—+—(1—qx)x=N(—+1—qx>.
X X x ‘
For example, if p = 0.01, so that ¢ = 0.99 and x = 20,
then the expected number of tests required is T = 0.23N,
a reduction of over 75%. But maybe we can do better by
making a different choice for x.
() For ¢ = 0.99, find the number x of samples in a group
that minimizes T (i.e., solve dT/dx = 0). Show that the
minimizing value of x satisfies

L (0.99)~*/*
~ /=099
(b) Use the technique of fixed-point iteration (see Section

4.2) to solve the equation in (a) for x. Start with x = 20,
say.

. (Measuring variations in g) The period P of a pendulum

of length L is given by
P =2n/L/g,

where g is the acceleration of gravity.

(a) Assuming that L remains fixed, show that a 1% increase
in g results in approximately a 0.5% decrease in the period
P. (Variations in the period of a pendulum can be used
to detect small variations in g from place to place on the
earth’s surface.)

(b) For fixed g, what percentage change in L will produce a
1% increase in P?

. (Torricelli’s Law) The rate at which a tank drains is propor-

tional to the square root of the depth of liquid in the tank above
the level of the drain: if V(z) is the volume of liquid in the
tank at time £, and y (¢) is the height of the surface of the liquid
above the drain, then dV/dt = —k,/y, where k is a constant
depending on the size of the drain. For a cylindrical tank with
constant cross-sectional area A with drain at the bottom:

(a) Verify that the depth y(?) of liquid in the tank at time ¢
satisfies dy/dt = —(k/A)/Y-

(b) Verify that if the depth of liquid in the tank at ¢t = 0 is
yo, then the depth at subsequent times during the draining

rocessis y = | /30 LAY
P y=A\vYo—74)"
(c¢) If the tank drains completely in time T, express the depth

y(t) at time # in terms of yo and T'.

(d) In terms of T', how long does it take for half the liquid in
the tank to drain out?

. If a conical tank with top radius R and depth H drains accord-

ing to Torricelli’s Law and empties in time T, show that the
depth of liquid in the tank at time ¢ O<t<T)is

t 2/5
=vyll—=] .
y=n(1-7)

where yo is the depth at # = 0.

7. Find the largest possible area of a right-angled triangle whose

8.

9.

10

perimeter is P.

Find a tangent to the graph of y = %3 + ax? 4+ bx + c that is
not parallel to any other tangent.

(Branching angles for electric wires and pipes)

(a) The resistance offered by a wire to the flow of electric cur-
rent through it is proportional to its length and inversely
proportional to its cross-sectional area. Thus, the resis-
tance R of a wire of length L and radius 7 is R = kL/r?,
where k is a positive constant. A long straight wire of
length L and radius rq extends from A to B. A second
straight wire of smaller radius r2 is to be connected be-
tween a point P on AB and a point C at distance h from B
such that C B is perpendicular to AB. (See Figure 4.72)
Find the value of the angle § = /BPC that minimizes
the total resistance of the path A PC, that is, the resistance
of AP plus the resjstance of PC.

A ld B
4 |
1k
!
1
1
C
Figure 4.72

(b) The resistance of a pipe (e.g., a blood vessel) to the flow
of liquid through it s, by Poiseuille’s Law, proportional to
its length and inversely proportional to the fourth power
of its radius: R = kL/r4. If the situation in part (3
represents pipes instead of wires, find the value of 6 that
minimizes the total resistance of the path APC. How
does your answer relate to the answer for part (2)? Could
you have predicted this relationship?

(The range of a spurt) A cylindrical water tank sitting o1
a horizontal table has a small hole located on its vertical wall
at height & above the bottom of the tank. Water escapes from
the tank horizontally through the hole and then curves dow? i
under the influence of gravity to strike the table at a distance -
R from the base of the tank, as shown in Figure 4.73. (We
ignore air resistance.) Torricelli’s Law implies that the speed
v at which water escapes through the hole is propoftiOIlZ‘1 t0
the square root of the depth of the hole below the surface of the
water: if the depth of water in the tank at time 7 is () >
then v = kx/y — i, where the constant k depends on the $i2¢
of the hole.

(a) Find the range R in terms of v and k.

(b) For a given depth y of water in the tank, how high shovld
the hole be to maximize R?

(¢) Suppose that the depth of water in the tank at time f =
is yo, that the range R of the spurt is Ro at that nme,.alf
that the water level drops to the height / of the hole 2 2
rminutes. Find, as a function of 7, the range R 0 g
that escaped through the hole at time 7.
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Suppose that the fraction of individuals in the population
infected with the virus is p, so the fraction uninfected is
g=1—p. The probability that a given individual is un-
affected is g, so the probability that all x individuals in a
group are unaffected is g*. Therefore, the probability that a
pooled sample is infected is 1 — ¢*. Each group requires one
test, and the infected groups require an extra x tests. Therefore
the expected total number of tests to be performed is

N N 1
T=—+—(1—qx)x=N<—+1—q">.
X X x ‘
For example, if p = 0.01, so that ¢ = 0.99 and x = 20,
then the expected number of tests required is T = 0.23N,
a reduction of over 75%. But maybe we can do better by
making a different choice for x.
(a) For ¢ = 0.99, find the number x of samples in a group
that minimizes T (i.e., solve dT/dx = 0). Show that the
minimizing value of x satisfies

L 0.99)~*/*
T /=099
(b) Use the technique of fixed-point iteration (see Section

4.2) to solve the equation in (a) for x. Start with x = 20,
say.

. (Measuring variations in g) The period P of a pendulum

of length L is given by

L/g,

where g is the acceleration of gravity.

P=2x

(a) Assuming that L remains fixed, show that a 1% increase
in g results in approximately a 0.5% decrease in the period
P. (Variations in the period of a pendulum can be used
to detect small variations in g from place to place on the
earth’s surface.)

(b) For fixed g, what percentage change in L will produce a
1% increase in P?

. (Torricelli’s Law) The rate at which a tank drains is propor-

tional to the square root of the depth of liquid in the tank above
the level of the drain: if V(z) is the volume of liquid in the
tank at time £, and y(z) is the height of the surface of the liquid
above the drain, then dV /dt = —k,/y, where k is a constant
depending on the size of the drain. For a cylindrical tank with
constant cross-sectional area A with drain at the bottom:

(@) Verify that the depth y () of liquid in the tank at time #
satisfies dy/dt = —(k/A)/Y-

(b) Verify that if the depth of liquid in the tank at ¢ = 0 is
yo, then the depth at subsequent times during the draining

o ke \*
processis y = (ﬁ_ - EZ) .
(c) If the tank drains completely in time T, express the depth
y(#) at time # in terms of yo and T'.

(d) In terms of T, how long does it take for half the liquid in
the tank to drain out?

. If a conical tank with top radius R and depth H drains accord-

ing to Torricelli’s Law and empties in time T, show that the
depth of liquid in the tank at time £ (0 < 7 < T)is

¢ 2/5
= 1—— ,
y=w(1-7)

7.

8.

9.

10.

where yo is the depth at # = O.v

Find the largest possible area of a right-angled triangle whose
perimeter is P.

Find a tangent to the graph of y = %3 + ax? 4+ bx + c that is
not parallel to any other tangent.

(Branching angles for electric wires and pipes)

(a) Theresistance offered by a wire to the flow of electric cur-
rent through it is proportional to its length and inversely
proportional to its cross-sectional area. Thus, the resis-
tance R of a wire of length L and radius r is R = kL/r2,
where k is a positive constant. A long straight wire of
length L and radius r; extends from A to B. A second
straight wire of smaller radius r2 is to be connected be-
tween a point P on AB and 2 point C at distance z from B
such that C B is perpendicular to AB. (See Figure 4.72)
Find the value of the angle § = /BPC that minimizes
the total resistance of the path A PC, that is, the resistance
of AP plus the resjstance of PC.

Figure 4.72

(b) The resistance of a pipe (e.g., a blood vessel) to the flow
of liquid through it is, by Poiseuille’s Law, proportional to
its length and inversely proportional to the fourth power
of its radius: R = kL/r*. If the situation in part (3
represents pipes instead of wires, find the value of 6 that
minimizes the total resistance of the path APC. How
does your answer relate to the answer for part (a)? Could
you have predicted this relationship?

(The range of a spurt) A cylindrical water tank sitting 01
a horizontal table has a small hole located on its vertical wall -
at height h above the bottom of the tank. Water escapes from :
the tank horizontally through the hole and then curves dov® E
under the influence of gravity to strike the table at a distance
R from the base of the tank, as shown in Figure 4.73. (We
ignore air resistance.) Torricelli’s Law implies that the speed
v at which water escapes through the hole is proportional to

the square root of the depth of the hole below the surface of the )

water: if the depth of water in the tank at time ? is y(®) >‘h’
then v = ka/y — 11, where the constant k depends on the 8128
of the hole.

(@) Find the range R in terms of v and h.

(b) For a given depth y of water in the tank, how high should
the hole be to maximize R? O

(c) Suppose that the depth of water in the tank at time t= .
is yo, that the range R of the spurt is Ro at that tme = 4
that the water level drops to the height & of the hole mt'
minutes. Find, as a function of ¢, the range R of the W4 ¢
that escaped through the hole at time 7.




