Introduction
Sets and Functions

The student who wishes to use this book successfully should have a sound
background in elementary calcilus and linear algebra and some exposure to
multivariable calculus. Adequate preparation is normally obtained from two
years of undergraduate mathematics. Also required is a basic knowledge of

'sets and functions, for which the necessary concepts are summarized in this

introduction. This material should be read briefly and then consulted as needed.
Set theory is the starting point for much of mathematics and is itself a vast
and complicated subject. For brevity and better understanding, we begin our

_ study somewhat intuitively. The reader who is interested in the subtleties of set

theory can consult the supplement at the end of this introduction.

A set is a collection of “objects” or “things” called members of the set. For
example, the collection of positive integers 1,2,3,... forms a set. Likewise, the
rational numbers (fractions) p/q form a set. If S is a set, and x is a member of §,
we write x € S. A subset of the-set S is a set A such that every element of A is
also a member of S; symbolically, this relationship is denoted (x € A) = (x € S),
where the symbol = denotes “implies.” When A is a subset of S, we write A C S.
Sometimes the notation A C S is used for what we denote as A C S. We can
also define equality of sets by stating that A = B means A C B and B C A; that
is, A and B bhave the same elements. The empty set, denoted 2, is the set with
no members. For example, the set of integers n such that n? = —1 is empty.

One method of specifying a set is to list its members in braces. Thus
we write N = {1,2,3, ...} to denote the set of all positive integers and Z =

{..,=3,-2.-1.0,1,2,3,...} for the set of all integers. An example of a
subset of N is the set of even numbers; it is written

A={2,4,6,...}={xeN|xiseven } C N

We read {x € N | x is even} as “the set of all members x of N such that x is even.”
Here .is an important notational distinction. If S is a set and a € S, then {a}
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2 Introduction: Sets and Functions

denotes the subset of S consisting of the single element a. Thus {a} C S, while
acs. '

Let Sbe a given set and{et A C Sand B C S. Define AUB={x € § | x €A
or x € B}, which is read “the set of all x € S that are members of A or B
(or both).” The set A U B is called the union of A and B. Similarly, one can
form the union of a family of sets. For example, let A1, A,, ... be subsets of
§ and let UXA; = {x € § | x € A; for some i}; this is sometimes written
U{A1,A42,4;,...}. Note that A U B is the special case with A; = A, A, = B, and
A; = & for i > 2. Similarly, we form the intersections A N B = {xeS|xeA
and x € B} and NZA; = {x € S | x € A; for all i}. Figure I-1 illustrates these
operations.

S AUB S ANB

@ (b) ©

FIGURE I-1 (a) Subset; (b) union; (c) intersection

For A C Sand B C S, we form the complement of A relative to B by defining
B\A={xeB|x&A},

where x & A means x is not contained in A. See Figure I-2.

FIGURE -2 Complement
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As in Worked Example 1.1 at the end of this introduction, we see that B\(A;U
Az) = (B\A])N(B\A2) and that B\(4; NA;) = (B\A1)U(B\A») for any sets A, Ay,
B c S. This is an example of a “set identity.” Other examples are given in the
exercises. #*

Given sets A and B, define the Cartesian product A x B of A and B to be the
set of all ordered pairs (a,b) witha € Aand b € B; i.e., AxB={(a,b)|ac A
and b € B}. See Figure I-3.

y

FIGURE [-3 Cartesian product

Let S and T be given sets. A function f : S — T consists of two sets §
and T together with a “rule” that assigns to each x € § a specific element of
T, denoted f(x). One often writes x — f(x) to denote that x is mapped to the
element f(x). For example, the function f(x) = x* may be specified by saying
x +— x°. Figure I-4 depicts this function with § = T the set of all real numbers;
this set is denoted R and will be introduced carefully in Chapter 1. For now,
we use it informally. v

. FIGURE I-4 The function x — x°
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Note. In this book, the terms “mapping,” “map,” “function,” and “transfor-
mation” are all synonymous.

>

b ’

For a function f : S — T, the set S is called the domain or source of f and T
is called the farget of f. The range, or image, of f is the subset of T defined by
f8) = {f(x) € T | x € S}. The graph of f is the set {(x.f(x)) € Sx T |x € S},
as in Figure I-5.

(x,f(x))
Lol \ __Graph of f
@) P
B l AXB
Ll ]
£ g
A x

FIGURE I-5 Graph of a function

Someone paying careful attention to logical foundations may object to using
colloquial language, such as “rule,” and would be happier to define a function
from S to T as a subset R of S x T with these two propetties:

1.  Each member of S occurs as the first component of some member of R, and

2. Two members of R with the same first component are identical; that is, the
first component x determines the second component f(x), as in Figure I-5.

A function f : § — T is called one-fo-one or an injection if whenever
X1 # X, then f(x1) # f(x2). Thus a function is one-to-one when no two distinct
elements of S are mapped to the same element of T. Equivalently, f is one-fo-
one when for each y € T, the equation f(x) =y has at most one solution x € S.
An extreme example of a function which is not one-to-one (if S has more than
one element) is a constant function, a function f : § — T such that f(xi) = f(x2)
for all x;,x, € S. See Figure I-6.

7

| The latter is often written “iff,” or <. In theorems it is absolutely necessary
to distinguish between “if,” “only if,” and “iff.”

We say that f : S — T is onto, or is a surjection, when for every y € T, there
is an x € S such that f(x) = y, in other words, when the range equals the target.

-Note. T definitions it is a-conventiom that “if*stands for~if and-ontyif=>|
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FIGURE I-6 Constant function

Another way of saying this is that for each y € T, the equation f(x) =y has at
least one solution x € S. It should be noted that the choice of S and T is part of
the definition of f, and whether or not f is one-to-one or onto-depends on that
choice. For example, let-f be defined by f(x) = x%. Then f.is_one-to-one and
onto when S and T consist of all real numbers x such that x > 0, is one-to-one
but not onto when S is all those x such that x > 0 and T is all real numbers,
and is neither when S and T consist of all real numbers. :

For f : S — T and A C S, we define f(A) = {f(x) € T | x € A}, and for
B C T we define f~1(B) to be the set {x € S | f(x) € B}. We call f(A) the image
of A under f and f~!(B) the inverse image, or preimage, of B under f.

Note. We can form f~!(B) for a set B C T even though f might not be
one-to-one or onto. :

If f : S — T is one-to-one and onto, then for each y € T there is a unique
solution x € S to f(x) = y. Thus there is a unique function, denoted f “1:T—S
(not to be confused with the operation f~'(B) defined in the previous paragraph
or 1/f), such that f(f~'(y)) =y forally € T and f~}(f(x)) = x for all x € S.
We call f~! the inverse function of f. A one-to-one and onto map is also called
a bijection, or a one-to-one correspondence.

Note. In calculus we learn how important the choice of domain (source) is
in forming the inverse function. For instance, to form sin~! = arcsin, we cut
the domain and regard sin as a map sin : [—7/2, /2] — [—1,1] on which it

is a bijection. Then sin”! : [-1,1] — [-n/2,7/2] is deﬁned.‘, Consult your

| calculus text for more examples.

The map f : § — S defined by f(x) = x for all x € § is called the identity
mapping on S. One should distinguish the identity mappings for different sets.
For example, one sometimes uses the notation Is for the identity mapping on S.
Clearly, Is is one-to-one and onto.
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For two functions f : S — Tand g: T — U, the composition gof : S — U
is defined by (g 0 f)(®) = g(f(x)), as shown in Figure I-7. For example, if
f : R — R is defined by f(x) % 22 and g : R — R by g(x) = x +3, then
gof:xr x*+3andfog:x— (x+3) (here S, T, and U consist of all real
numbers). In particular, note that f o g #gof.

FIGURE I-7 Composition of mappings

Note. In calculus, we learn that compositions are important for, among otber
things, the chain rule. The same is true in this book.

Sometimes we wish to restrict our attention to just some elements on which a
function is defined. This process is called restricting a function. More formally,
if we have a mapping f : S — Tand A C S, we consider a new function denoted '
f|A:A — T defined by (f | A)x) = f(x) for all x € A. We call f | A the
restriction of f to A and f an extension of f | A. .

A set A is called finite if we can display all of its elements as follows:
A = {a1,az,...,as} for some integer n. A set that is not finite is called infinite.
For example, the set of all positive integers N = {1,2,...} is an infinite set.
It can be difficult to decide if one infinite set has more elements than another
infinite set. For instance, it is not clear at first if there are more rational or
irrational numbers. To make this notion precise, we say that two sets A and
B have the same number of elements (or have the same cardinality) if there

exists a mapping f : A — B that is one-to-one‘and onto. If an infinite set has

\

the same number of elements as-the-set-of-integers—{1; 2} then-it-is-called— — -

 denumerable. A set that is either finite or denumerable is said to be countable; :

otherwise, it is called uncountably infinite, or just uncountable. An example of

an uncountable set is the set of all real numbers between 0 and 1. (We shall
prove this in Chapter 1.) _

Let S be a set. A sequence in S is a mapping f : N — S. Thus we associate

to each integer n an element of S, namely f(n). One often suppresses the fact
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that we have a function by simply considering a sequence as the image elements,
say xj, X2, %3, - . ., or alternatively we write “the sequence x,” or (x,),2;. We call
Y1.Y2,. .. a subsequence of xi,x,,... if there is a function g : N — N such
that for every i €N, y; = x, and if for i <%, g(i) < g(j). In other words,
a subsequence is obtained by “throwing. out” elements of the original sequence
and naturally ordering the elements that remain. For example, the sequence
y, = (2n)? is a subsequence of x, = n?. Here g(n) = 2n. Sometimes one writes a
subsequence of x, as x,,, where the notation g(i) = n; reminds us that the n; are
chosen from among the »’s.

An important method for proving statements indexed by the positive integers
N is the technique of induction. A property P(i) is true for all i € N if:

1.  P(1) is true (base case), and” ST B

2. For évery n € N, if P(n) is true then P(n+ 1) is true (induction step).
The same technique also applieg to {0,1,...} with the base case replaced by:
1. P(0) is true. ‘

We shall have more to say about the basis for the natural numbers in §1.1.

Supplement on the Axioms of Set Theory'

" There is no rigorous mathematics today that does not use concepts from set

theory. For this reason we started with set theory in this text. The purpose of

~ this supplement is to help bridge the gap between the approach in this text and

that in more formal set theory- courses using a book like Halmos’s Naive Set

Theory.” Any introduction to set theory has to take into account the following

points:

1. The concept of a set is so basic that it is impossible to define it in terms
of more basic notions.

2.  For this reason, we specify the concept of a set with axioms, but the
axiomatic method may not be familiar to the student.

3.  Axiomatic set theory involves logic, but some concepts of logic may not

’ e e e

be familiar either. :

In view of these circumstances, the most effective approach, and the one
used in this text, is to start working with the intuitive concept of a set and come

U'This supplement was written with the help of Istvan Fary.
2Halmos, Paul R., 1960. Naive Set Theory. New York: D. Van Nostrand Co.
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back to foundations later. When this method is used, the question arises whether
to take up logic first or to treat axiomatic set theory without formal logic. We
choose the second approach. .

This plan corresponds to‘the historical development: Set theory based on
intuitive concepts came first, then criticism of this approach inspired the ax-
iomatic foundations, and finally an intensive discussion of this method heralded
new developments in logic. It may be useful, therefore, to say something about
the history of our subject.

On the History of Set Theory

Set theory is one of the most basic areas of mathematics. It includes facts about
finite sets, but the importance of the theory is that it can deal with infinite sets
and can be developed systematically. In this sense, the founder of set theory
was Georg Cantor (1845-1918). He published his important papers just before
the start of the twentieth century. There was a heated debate over his work, and
famous mathematicians disagreed about fundamental questions.

Cantor was led to discover properties of infinite sets in connection with his
work on trigonometric series (see Chapter 10). A trigonometric series is a sum
of the form

o0

Z:(a;c cos kx + by sin kx).

k=0
Convergence properties of these series are delicate questions, and defining sets
of points according to the behavior of the series leads to very general types of
sets of numbers. For this reason, Cantor dealt with sets of real numbers first but
soon discovered that he had to deal with infinite sets in general.

In one of his papers, he gave the following “definition” of the concept of

set:

We understand by “set” any gathering M of well-defined,
distinguishable objects m (which will be called “elements”
of M) of our intuition or our ideas into a whole.3 . )]

It is customary today to be “ashamed” of the’original definition of Cantor and
ary 13 )

to-say that it is riot a definition. Yet there are many so-called definitions in other
~ fields that do not come close to the clarity and precision of (1). Nevertheless,
since the concept of a set is so important, we will not ultimately accept Cantor’s

3The original German text (Collected Papers, p. 282) is: “Unter einer ‘Menge’ verstehen wir
Jjede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung
oder unseres Denkens (welche die ‘Elemente’ von M gennant werden) zu einem Ganzen,”
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definition. However, for the moment we will use (1) to clarify our ideas about
sets. 4

The first point is that we “gather together” objects, and we disregard the
order in which they are taken. For example, if we talk about “the set of natural
numbers” we do not imply that the elements of this set are given in some “order,”
even though there is a “natural order” for integers. For practical purposes we
may list the elements in some order, but this has nothing to do with the set itself.

The words “well-defined, distinguishable objects” in (1) point out another
aspect of the concept of a set: The elements of the set do not “appear twice”;
thus, for example, a set consisting of 2, 2, 2, 3 contains 2 and 3 and nothing
else. Hence, a set “contains” some objects which “belong” to the set; some
other objects may not belong to the set. For example, 1003 belongs to the set
of natural numbers (positive integers), while 3.14159 does not belong to it.

Finally, the “whole” at the end of (1) refers to the fact that sets themselves
are treated as objects; for example, they may be elements of other sets. Thus we
may consider sets whose elements are sets. In fact, these are among the most
important sets in set theory.

Let us now criticize Cantor’s definition. Consider the following definition:
An integer p is a prime number if p # 1 and %1, +p are the only divisors of
p- In this definition the concept of “prime number” is defined in terms of other
concepts (integers, divisor, +1, —1, —p), and we suppose that the latter concepts
are known or were defined without the use of the concept of prime number. The
definition thus reduces.the concept of prime number to those other concepts. This
definition also tells us what to do in order to test whether or not 1003 is a prime
number (it is not; it is divisible by 17). Let us see whether (1) can stand up to
such criteria. We have in this sentence a number of other concepts: “gathering,”
“well-defined;” “distinguishable,” “whole” (not to mention our “intuition,” our
“ideas™). It is only fair to ask which concept is simpler: “set” or “gathering.” (In
fact, the German word “Zusammenfassung” sounds better, but it does not escape
the criticism.) Similarly, we can question every one of the other concepts and
wonder whether it is simpler than the concept of a set. Cantor’s definition was
also criticized on the grounds that it does not exclude contradictory sets, as we
will see in the following section. Motivated by this criticism, Cantor discovered
a germ of the axiomatic description in a later paper.

Logic . R

We treat logic in an uncritical and unsophisticated way. It is probably fair to
say that the basis of our rational thinking is the following belief: If we start
with true premises and make correct deductions from them, then we reach a
true conclusion. We could refuse to accept this, but we would not get far in
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mathematics. If we take this belief seriously (as we do in mathematics), then
rather sophisticated results can be reached. For example, suppose that 2, 3, 5,
7, 11, 13, and 17 are the only prime numbers > 2. Then form the number
n=2-3-5.7-11-13.17 1. Note that n is not divisible by a prime < 17.
(f n factored as such a prime times an integer, then we would obtain 1 as a
nontrivial product of integers, which is impossible.) Thus, n is a prime or it
has a divisor that is a prime > 18. Since the conclusion plainly contradicts the
premise, both cannot be true, and since our reasoning was correct, the premise
must be false—there is a prime number > 18. This is not surprising, as 19
happens to be such a prime number, but we reached the conclusion by reasoning
and not by experience. More important, the same argument shows that there is a
prime number larger than any given prime; i.e., there are infinitely many primes.
This reasoning, sometimes called reductio ad absurdum, is used frequently. -

There are English sentences in which we can erase a word, write x in its
place, and still get a meaningful sentence. For example, in the sentence “two is
smaller than five,” erasing “two” and writing “x” gives the sentence “x is smaller
than five.” Such a combination of words is called a propositional function or
condition and could be denoted S(x). Writing “seven” in place of x we get a
false sentence, and writing “three” in place of x we get a true sentence, so that
S(x) is meaningful if x is an integer and is true for some integers and false for
other. integers. Given an arbitrary condition S(x), we may

Take all objects whose name, substituted in the place of
“x in S(x), gives a true sentence. 2)

It is understood that x may occur several times, and substitution must be done
consistently (thus x is just a “place holder”). On. the basis of definition (1), we
thus obtain a set. There is a standard notation for this set:

{x] SW}. | 3)

In spite of the fact that (2) is consistent with (1) and with the usual concept of
set, we run into contradictions if we use (2) indiscriminately. Take the following
example: o '

The set that does not contain itself as an element. “)

This phrase seems to be all right; after all, who ever saw a set that contained

A

itself-as-an-element? Erase-“the set that,>-and-write-“x” to obtain-the-equivalent—

sentence:
S(x) = x does not contain itself as an element. N6

Then take the corresponding set described in (2) and call it M as Cantor does

(M for “Menge”). Let us ask the question: Does M contain-M? If it does not,
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then it should, by the sentence that defines it. If it does, then it should not, by
virtue of the same sentence.

This property of construction (2), first noticed by Bertrand Russell, is shock-
ing and discouraging. When we were inspectiri‘zg Cantor’s definition, we sug-
gested that it was not really that bad and actually helped clarify ideas. Now we
find that, at the same time, it allows forming the impossible set M.

The example of the set M may suggest that there is something inherently
wrong with the concept of a set, or at least with the concept of “big” sets. In fact
M is as big as they come—it contains every single “decent” set. However, the
kind of contradiction we have in connection with (5) is well known in classical
logic. Let us first mention an example that can be formulated in terms of “small”

sets. Let N be the set of men living in a small village. Suppose that the barber of

the village declares, “I will shave x € N if and only if x does not shave himself.”
It seems that this sentence defines a subset P C N. However, the question of
whether the barber belongs to P leads to the following “barber’s paradox™: “I
will shave myself, if I do not shave myself.”

Note. In more modern terms, consider the “Russell light” on your car’s
dashboard. This is the light that comes on when any of the dashboard lights
burn out. What happens if the Russell light burns out?

This dilemma was extensively discussed by Greek logicians, who did not
use the concept of a set. Hence, the contradiction may be independent of the
notion of a set. This seems to be confirmed by the following paradox.
Suppose that during one of my. lectures a student in the class says,

The last sentence on the blackboard is false. ~(6)

This can happen, unfortunately. If it does, I normally do the following: I
reread the sentence. If I find that the student is right, then I apologize, erase
the sentence, and write down a corrécted sentence. If I find that the student
was mistaken, then I say so aloud and leave the sentence on the blackboard.
To make this concrete, suppose now that I am lecturing on set theory and so
far have written items (1) through (6); these items, and nothing else, as on the
blackboard, in order. If a student now says, “The last sentence on the blackboard

is false,” Tam at a Ioss as to what to do. If the student is right, then (6) is false,

which means that it is true; hence the student was wrong, but in this case the
sentence is right, which means that it is false.

It would be interesting to pursue these questions of logic, but our aim has
been simply to indicate why it is advisable to restrict the form of sentences when
defining subsets of a set in our axiomatic set theory.
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" The Language of the Axioms

In a complete, advanced presentation of the axioms of set theory, formalized

logic must be used. Thus at l€ast part of the language of the theory is formalized.”

We now describe this part of the language, without carrying out a formalization.
There will be two basic types of sentences, namely, assertions of belonging,

X € »A, : ‘ @)

and assertions of equality
: A=B. )

All other sentences are to be obtained from such atomic sentences by repeated

application of the usual logical operators, subject to the rules of grammar and

unambiguity.

To make the definition explicit, it is necessary to append to it a list of the
“usual” logical operators and the rules of syntax. Our list of logical operators
will be

not
and
or (in the nonexclusive sense) (®)
if—then— (meaning implies)
if and only if (abbreviated iff)
for some— (there exists)
{ for all—

Notice that “not” operates on a single sentence, the next four operators act on
two sentences (S and 7, ..., S iff T), and the last two act on conditions (for
some x, S(x) holds, and so forth). This list is redundant: It is proved in logic
that the first five can be replaced by fewer operators. [For example, we can
delete “and” from the list; instead of the sentence “S and T,” where S and T
are sentences, we can say “not (not § or not T).” This is clumsy in colloquial
English but very simple with appropriate logical symbolism. Since we do not
want to use formalized logic, we use the longer list (8).] In our list, the first five
operators are called logical connectives, and the last two are called quantifiers.
In the usual formalism, “for some x” is written 3x and “for all x” is denoted
Vx. The connection between these two quant{ﬁers is as follows. The negation

of “for some x, S(x) holds” is “for all x, not S(x) holds.” The negation of “for
all x, S(x) holds™ is “there is an x such that not S(x) holds.” This is possibly the
main idea to be learned here. Often the connection between the two quantifiers
appears in the following form;"We want to prove a statement:

For every g9 > 0, -+ is true. o ©
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The negation of this is
There exists €o > 0 such that --- is not true. . (10)

2
If we can now deduce a contradiction from (10), we have a proof of (9). As for
the rules of sentence construction, we agree on the following conventions:

1. When using “not,” put it before a sentence and enclose the whole between
parentheses. (The reason for parentheses is to guarantee unambiguity.)

2.  Put “and,” or “or,” or “if and only if,” where used, between the two
sentences it applies to, and enclose the whole between parentheses.

3. Replace the dashes in “if—then—" by sentences and enclose the result in
parentheses.

4. Replace the dash in “for Some—" or “for all—” by a variable, follow
the result by a sentence, and enclose the whole in parentheses. [If the
variable used does not occur in the sentence, no harm is done. According
to the usual convention, “for some y (x € A)” just means “x € A.” It is
equally harmless if the variable name used has already been used with
“for some—""or “for all—".. “For some x (x € A)” means the same as
“for some y (y € A)”; a judicious change of notation will always avert
alphabetic collisions.

The Axioms

Instead of giving a definition of the concept of “set A” and that of “belonging to
a set,” denoted a € A, we will give properties of these concepts. Enumerating
properties is the main feature of the axiomatic method. We now state the axioms,
accompanying them with a few remarks.

1. Axiom of Extension Two sets are equal if and only if they have the
same.elements.

This axiom means, in particular, that if we want to prove A/= B, then we

—havetoprovethatx-€A-impliesx-¢-B and that x-€ B impliesx-€A- This-peint

is so important that it is worthwhile to have a notation for the case when only
half of it—say, the first half—is satisfied. We then-write A C B. This will be a
relation between sets; it is not an undefined concept but is defined in terms of

“set” and “belonging.” See Worked Example L.1 at the end of this introduction
for a concrete use of this axiom.
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2. Axiom of Specification 7o every set A and condition S(x) there cor-
responds a set B whose elements are exactly those elements x of A for which

S(x) is true, : 4

We introduce the notation
{xeA|Sw} an

to denote the set B. Notice that (11) is the same as our set 3) éxcept that now
we do not form the set of all objects satisfying a certain condition but only those
that are already elements of some set (the set A in (11)). This allows us, for
example, to form sets of real numbers quite arbitrarily, such as :

I={xeR|a<x<b} , (12)

where our sentence S(x) is a < x < b, provided we know that R is a set. (This
is not yet implied by axioms 1 and 2.) The simplest set (11) can be formed with
the atomic sentence (7); then we get A = {x € A | x € A}, hence A is a subset of
A. If our sentence S(x) is not satisfied by any element of A, then (11) describes
the empty set @. We can always write an impossible condition, for example,
xZ¢A Theno={xcA|x¢ A}. In conclusion, if there is any set, then there
is an empty set containing no elements. (Our axioms do not yet say that there
are sets at all; we postulate this later.)

On the basis of axiom 2, we introduce the important set theoretical operation
of intersection. Given sets A and B, we write {x € A | x € B}; this set is denoted
ANB, as you know. The set BNAis {x € B|x ¢ A}, which is clearly the
same set as AN B. The most general operation is the intersection of a collection
of sets C (instead of a set of sets we sometimes say a collection of sets, but,
for us, “collection” shall be synonymous with “set”): Suppose C is a set, and,
if A € C, then A is also a set. We define: '

(MAlAeCt={redo|AveCandxcAforall AcC) (13

Hence x is an element of the intersection if it belongs to all sets that belong to
C. AN B corresponds to the case when C contains two elements, one being A
and the other being B. If all elements of C arg indexed with integers so that

C ={A,}, we write

ﬂA,, ={x'€ A, [xeA,, for all n}. 7 14)

n=1

Cleaﬂy (14) is the set (13) in-this special case (in 'some cases the kelements of C
cannot be indexed this way).
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3. Axiom of Pairing For any two sets, there exists a set to which they
both belong. : :

>

st .
4. Axiom of Unions For every collection of sets, there exists a set that

contains all the elements that belong to at least one of the sets of the given
collection.

If Cis as in (13), we write

Jialaecy (15)

to denote the set postulated in axiom 4. The notations A U B and N4, are
used in special cases, as with unions. If we want to prove that x € UA,, then
we must prove x € A, for at least one n; if we want to prove x € N4, then
we must prove x € A, for all n. The logical quantifiers 3x, Vx are thus closely
connected to the set theoretical operations U, N. .

We must carefully- distinguish the pairing and the union: The set {A,B},
postulated in z‘xiom 3, has the two elements A and B if A # B and a single
element A if B = A (this: is not excluded). For example, given the set &, we
can form the set {@, @} = {@}, which is a nonempty set; it has one element.
Axiom 4 postulates the existence of A U B. This set does not in general contain
A or B a8 elements; its elements are either elements of A or elements of B. For
example, @ U @ = & has no element; hence it is different from {@}.

Axioms 3 and 4 also imply the existence of a set {A,B,C} with three
elements. To see this, form {A,B} and {C,C} = {C} and then the pair
{{A.B},{C}} = D. Take the union of the elements of D.  Similarly, given
n sets Aj, ..., A,, we can form the set {A;,...,A,}.

5. Axiom of Powers For each set there exists a collection of sets that
contains among its elements all the subsets of the given set.

The axiom of powers is a basic tool of set theory. We already know what
countable sets are. We shall show in Worked Example 1.6 at the end of this
introduction that if A is countable, then the power set P(A) is not countable and,

more generally, that there is no bijection from A to P(A). This"was discovered
by Cantor; set theory, as ' we understand it today, was launched by this discovery.
If A is denumerable, then there is a bijection from P(A) to R, that is, the set
of real numbers. Hence, if we accepted the existence of the integers as a set,
axioms 1 through 5 would imply the existence of the set R of real numbers,
as will be introduced in §1.2. But the axioms given so far do not postulate the
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existence of any set, let alone the existence of infinite sets. For instance, axiom
4 is understood this way: If you have a collection of sets, then you can form
the union. But we never said you have any sets to begin with!

Before formulating the fast group of axioms, we examine the question of
existence of sets more closely. If we understand sets in the sense of Cantor’s
definition (1), all our axioms are satisfied. We can deduce from the axioms that
some sets which can be formed by Cantor’s definition are not sets in the sense
of the axioms. Specifically, given a set A we can form B = {x € A | x & x}.
Suppose now that B € B. Then B ¢ B, and hence it is not possible for B to be an
element of itself. In conclusion, B ¢ B, and in particular B ¢ A. Summing up,
given any set A, a set B can be constructed that is not an element of A. Hence the
axioms exclude the existence of a set that would contain all sets. On the other

hand, Cantor’s definition would admit such a set. Similarly, the contradiction

concerning the set M of (5) shows that M is not a set. The axiomatic system
thus accomplishes our purpose: On the basis of the axioms we can introduce a
part of Cantor’s set theory, which is indispensable in mathematics, and at the
same time we can exclude the known contradictions of Cantor’s theory.

If we replace the word “set” in axioms 1 through 5 by the words “finite
set,” we have consistent statements. Since we want to introduce the concept of
“set” with these axioms, we must accept any interpretation consistent with them.
Hence, there is a need for an axiom of infinity.

Definition If x is a set, then we define x* = xU {x} and call it the successor

of x.

6. Axiom of Infinity There exists a set containing & and containing the
successor of each of its elements.

v This is the sort of axiom needed to introduce the integers. The next axiom,

which has been a point of controversy in the history of set theory, asserts that
from any collection of sets, we can “pick out” one representative from each set
in the collection. This is stated more precisely in the next axiom. '

7

T—Axiom—of -Choice—If A is-acollection—of pairwise-disjoint nonempty—

sets, then there exists a choice set C such that x O\ C contains a single element
for every set x in A.

We have already used the concept of an ordered pair-(a, b) of elements a, b.
An ordered pair contains a first element (coordinate) a and a second element
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(coordinate) b. The concept of an ordered pair could be reduced to the concept
of a set by defining (a,b) = {{a}, {a,b}}; we will not give the details here.

. If A and B are given sets, we can form the set of all ordered pairs (a, b); this
set is denoted A x B. By definition, a map f : A -» B is a subset of A x B such

that:
1. Given a € A there is a b € B such that (a,b) € f;
2. If (a,b)) € f and (a,bs) € f then by = b;.

Instead of (a,b) € f we write b = f(a). We may proceed to define the
following terms, notations, and concepts in connection with functions: injection,
surjection, bijection, restriction, extension, f(X) if X C A, YY) if Y C B, and
composition of maps. If B C R, then f is usually called a real-valued function.

8. Axiom of Substitution .If S(a,b) is a sentence such that for each a in
a set A the set {b | S(a,b)} can be formed, then there exists a function F with
domain A such that F(a) ={b | S(a,b)} for each a in A.

By definition, a function F has a target; hence axiom 8 requires the existence
" of aset Bsuchthat F C A x B. :

We can remember these axioms if we summarize them in suggestive form as
follows.. The axiom of extension gives a criterion for the equality of two sets.
The axioms of specification, pairing, unions, and powers allow us to specify
subsets and form pairs (and finite sets in general), intersections and unions, and
the collection of all subsets of a given set (called the power set of the given
set). We postulate the existence of infinite sets. The axiom of choice ensures
that we can choose a single element from each set of a collection of pairwise
disjoint, nonempty sets and form a set with the chosen elements. The axiom of
_ substitution shows that we can substitute for each element of a given set some

set depending on this element.

If we givé completely detailed proofs in mathematics, then we have to go
back to these axioms and to first principles of logic. In practice, we mainly
use the set theoretical operations of union, intersection, complement, difference,
power set, and choice set (the last usually implicitly). ¢

/

Worked Examples for the Introduction
Example 1.1 For sets A,B,C C S, show that the distributive law holds:

Aﬂ(BUC):(AﬂB)U(AﬂC).
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Solution One method is to show that each side is a subset of the other. ,
First take x € AN (BU C). This means that x is a member of both A and
B U C. Therefore, x is in A and hence x is in either AN B or AN C; that
s, x € ANBUMANC),and so ANBUC) C ANBYU AN C). Now
letx € ANB)UANC); thus x is in either ANBorANC. If x € ANB,
then x is in A and B, and in particular, x is in A and is in B U C, so that
x € AN(BUC). Similarly, if x € AN C, we conclude that x € AN (B U O).
Hence ANBYUANC) C AN(BUC), and so we now have equality. The
distributive law can be verified diagrammatically as in Figure I-8. ¢

FIGURE I-8 Distributive law

Example L2  Show that for A,B C S,

ACB& S\AD S\B.

Solution First we prove that A C B implies S\B C S\A. Assume A C B
and x € S\B. Then x ¢ B and therefore x ¢ A (since x € A = x € B), hence
x € S\A, proving that S\B C S\A. To prove the converse, suppose S\B C S\A
and x € A. Then x ¢ S\A and so x ¢ S\B (since S\B C S\A) and thus x € B.
Hence ACB. ¢

Example 1.3 Ler f(x) = x> (defined on the set of all real numbers) and

B = {y-}y->1}—Compute-the-set f =1 (B)—

Solution By deﬁmtnon f- 1(B) consists of all x such that f(x) € B, that is,
all x such that x> > 1. This happens iff x > 1 or x < —1. Thus f~4(B) = {x |
x>1u{xfx<-1}. ¢
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Example 1.4 Show that f(A N B) C f(A) Nf(B). Give an example of A, B,
and f with the property that f(A N B) #f(A) N f(B).

P
Solution If y € f(A N B), then there is some x € AN B with y = f(x). We
know that x € A and x € B, and so y € f(A) and y € f(B). -This shows that
y € f(A) Nf(B), so f(AN B) C f(A) Nf(B). For an example, let A = {x €
Z|x>0},B={x€Z]|x <0}, withf : Z — Z defined by f(x) = x°.
Then f(A) = A, f(B) = A, and f(A) N f(B) = A. However, AN B = {0}, and so
FANB) =f{0}) = {0} #A. ¢

Example 1.5 Use induction to show that 1 +2+ -+ +n = n(n + 1)/2 for
everyn € N. ‘

Solution Let P(i) be the statement 1 +- - - +i = i(i + 1)/2 whose truth or fals-
ity we are trying to establish. We check the conditions 1 and 2 of the method
of induction given in the first part of this introduction. The statement P(1) is
obviously true, since it reduces to 1 = 1-2/2. Now assume that the statement
P(n) is true and let us show that P(n + 1) is true:

1424 +n+(@+ D) =1 +2+--+n)+(n+1)

_ n-(n+1)+(n+1)=n-(n+1)+2-(n+l)
2 2
(n+1)n+2) (m+Din+1)+1]
2 - 2 )

Thus the statement is true forn+1. ¢

Example 1.6 Ler A be a set and let P(A) denote the set of all subsets of A.
Prove that A and P(A) do not have the same cardinality.

7

— ——Seolution—Suppose-there-is—a-bijection f+A — P(A);~we-shall then-derive

a contradiction. Let B = {x € A | x & f(x)}. There exists a y € A such that
f(y) = B, since f is onto. If y € B, then by definition of B we conclude that
y & B. Similarly, if y ¢ B, then we conclude that y € B. In either case we get a
contradiction. Actually, the argument shows that there does not exist a function
f:A— P(A) thatis even onto. 4 :
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§ . Exercises for the Introduction

i 1.  The following mappmgs are defined by stating f(x), the domaln S and the
target T. For A C Sand B C T, as given, compute f(A) and f IB). -
J Ca f&y=2,8={-1,0,1}, T all real numbers,

i‘ A={-1,1},B={0,1}.

2, ifx>0

‘i b. f(x)={——x2, ifx<0

; S =T = all real numbers,
i A ={x € real numbers | x> 0}, B={0}.
|| . 1, ifx>0
.’ c. fx)= 0, ifx=0
-1, ifx<O
| ' S =T = all real numbers __
_' - ' A=B={x¢€ real numbers | -2 < x < 1}. o : 4

2. Determine whether the functions listed in Exercise 1 are one-to-one or
- onto (or both) for the given domains and targets.

3. Letf:S§— T beafunction, C,,C, C T, and D;,D> C S. Prove

a. fHCUGC)=fHCHUfNC).
b.  f(D1UDy) =f(Dy) Uf(Ds).
¢ fUCINGC)=f"HC)NFUC.
~d. f(DiNDy) C f(D1) O f(D2).
4. Verify the relations (a) through (d) in Exercise 3 for each of the func-
tions (a) through (c) in Exercise 1 and the following sets; use the sets
in part a below for the function in Exercise 1(a), the sets in part b for

the function in Exercise 1(b), and the sets in part ¢ for the functions in
Exercise 1(c):

Ci=allx>0,Dy={-1,1},C; = all x < 0, D, ={0,1};
A Ci=allx>0,D1= allx>0,C=all x<2, Dy=all x> —1;
.- c¢. Ci=alx>0,D=allx,C=alx>~1,D,=allx>0.
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If f:S§ — Tis a function from § into 7, show that the following are
equivalent. (Each implies the other two.) .

a. fis one-to-one. : s
b. For every y in T, the set f~'({y}) contains at most one point.
¢.  f(D1NDy)=f(Dy)Nf(Dy) for all subsets D; and D, of S.

Develop similar criteria for “ontoness.”

Show that the set of positive integers N = {1,2,3,...} has as many el-
ements as there are integers, by setting up a one-to-one correspondence
between the set Z = {...,—3,-2,-1,0,1,2,3,...} and the set N. Con-
clude that Z is countable.

Let A be a finite set with N elements, and let P(A) denote the collection of
all subsets of A4, including the empty set. Prove that P(A) has 2V elements.

a. Let N ={0,1,2,3,...}. Define o : NxN — Nby ¢ij) =j+
%k(k +1) where k =i+ j. Show that ¢ is a bijection and that it has
something to do with the following picture:

4

b. Show that if A;,A,, ... are countable sets, so is A; UA U ---.

Let A be a family of subsets of a set S. Write UA for the union of all
members of A and similarly define N.A. Suppose B O A. Show that
c{UJACUBand NB CNA. -
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10.

11.

12.

13.

14.

15.
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Letf:S—T, g:T—U, and h : U — V be mappings. Prove that
ho(gof)=(hog)of (that is, that composition is associative).

Letf:S—T, g: T 2, Ube given mappings. Show that for C C
U, (gof)"HC) =g~ (O -

Let A be a collection of subsets of a set S and B the collection of com-
plementary sets; that is, B € B iff S\B € .A. Prove de Morgan’s laws:

a. S\UA=NB.
b. S\NA=UB.

Here UA denotes the union of all sets in A.
For example, if A= {A;,Az}, then

a. reads S\(4; U A =(S\A)N (S\Ag) and
b. reads S\(4; NAz) = (S\AD) U (S\A2).

Let A,B C S. Show that

AxB=0g & A=gorB=02.

Show that

a. AxBUA x B) =(AUA') x B.

b. (AxB)N(A xB)=@ANA)xBNB)
Show that

a. f:S— T is one-to-one iff there is a function g : T — S such that
-~ gof=Is; we call g aleft inverse of f.

b. f:S— Tisonto iff there is a function 2 : T — S such that foh = Ir;
we call & a right inverse of f.

16.

c¢. Amapf:S—Tisa bijection iff there is a map g: T — S such™

that f o g = Ir and g of = Is. Show also that g =f~! and is uniquely
determined.

Letf:S—Tandg:T—U be bijections. Show that g o f is‘ a bijection
and (gof)"t=f"tog ! [Hint: Use Exercise 15(c).]
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17. - (For this problem you may wish to review some linear algebra.) Let

amn apg ...

az a» ..2 Qay
A=

An1 AGm2 **° Qmn

be an m x n matrix where the a;; are real numbers. Use Exercise 15 to
show that A has rank m if and only if there is a matrix B such that AB is
the m x m identity matrix.




