國立東華大學應用數學系 科目:高等微積分(一) 100學年度第一學期期末考試券

100學年度第一學期期末考試卷	時間:	Jan.	07,	2012

Note that B(x,r) = D(x,r) is the open ball with center x and radius r, $cl(A) = \bar{A}$ is the closure of A and $bd(A) = \partial A$ is the boundary of A. A' is the collection of all accumulation points of A.

- 1. (20%) Give the following definitions: Let (M, d) and (N, ρ) be two metric spaces, $f: M \to N$ be a function and $x \in M$.
 - (a) M is sequentially compact;
 - (b) M is path connected;
 - (c) M is totally bounded;
 - (d) f is continuous at x.
- 2. (20%)
- (a) Show that $(-\pi/2, \pi/2)$ is path connected. (Hence, by theorem, it is connected.)
- (b) Construct a continuous function f from \mathbb{R} onto $(-\pi/2, \pi/2)$. (By the facts that \mathbb{R} is connected and a continuous function maps connected subsets in connected subsets, $(-\pi/2, \pi/2)$ is connected.)
- 3. (15%) Let A be bounded on \mathbb{R}^n . Show that cl(A) is compact.
- 4. (15%) Let M be an infinite set with discrete metric. Show that M is not compact.
- 5. (10%) Determine which of the following statements are true. Prove the true statements and give a counterexample for those that are false:
 - (a) If $f: M \to N$ is a continuous function from a metric space M into another metric space N and U is open in M, then f(U) is open in N;
 - (b) If A is connected in \mathbb{R}^2 , then A is open or closed.
- 6. (24%) Which of the following sets are compact? connected? or path connected?
 - (a) $A = \{x \in \mathbb{R} | 0 \le x \le 1 \text{ and } x \text{ is irrational} \};$
 - (b) $B = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le 1\} \cup \{(x, 0) \in \mathbb{R}^2 | 1 < x < 2\};$
 - (c) $C = \{(0, y) \in \mathbb{R}^2 | -1 \le y \le 1\} \cup \{(x, \sin(\pi/x)) \in \mathbb{R}^2 | 0 < x \le 1\};$
 - (d) $D = \{f(x) \in \mathbb{R} | x \ge 0\}$ where $f : \mathbb{R} \to \mathbb{R}$ is continuous.
- 7. (16%) Let A_1 and A_2 be path connected in a metric space M and $A_1 \cap A_2 \neq \emptyset$. Show that $A_1 \cup A_2$ is path connected.
- 8. (20%)
 - (a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x,y) = x. Prove that f is continuous.
 - (b) Let U be open in \mathbb{R} . Show that $A = \{(x,y) \in \mathbb{R}^2 | x \in U\}$ is open.