\star Answer and mark clearly the questions in the provided answer sheets.
Write down your name and student's ID on the each answer sheet you used.

* Note: There are 100 points in this exam.

No points will be given if no arguments are provided for an answer.
Good Luck! $\quad \sim \sim$ Yuling $\quad \ddot{ }$
Use $z_{0.025}=1.96, z_{0.05}=1.645, z_{0.1}=1.28, z_{0.125}=1.15, z_{0.2}=.845, z_{0.25}=.675$
$\chi_{1,0.05}^{2}=3.84, \chi_{2,0.05}^{2}=5.99, \chi_{3,0.05}^{2}=7.8, \chi_{4,0.05}^{2}=9.5, \chi_{5,0.05}^{2}=11.07, \chi_{6,0.05}^{2}=12.59$
$\chi_{1,0.95}^{2}=.004, \chi_{2,0.95}^{2}=.103, \chi_{3,0.95}^{2}=.352, \chi_{4,0.95}^{2}=.711, \chi_{5,0.95}^{2}=1.15, \chi_{6,0.95}^{2}=1.64$,
$t_{7,0.05}=1.9, t_{7,0.1}=1.4, t_{8,0.05}=1.85, t_{8,0.1}=1.39, t_{9,0.05}=1.83, t_{9,0.1}=1.38$
$F_{1,7,0.05}=5.6, F_{1,7,0.1}=3.6, F_{1,8,0.05}=5.3, F_{1,8,0.1}=3.45$ in this exam.

1. (10 points) A sample of size 1 is taken from the p.d.f.

$$
f(x ; \theta)= \begin{cases}\frac{2}{\theta^{2}}(\theta-x) & \text { if } 0<x<\theta \\ 0 & \text { otherwise }\end{cases}
$$

Let θ_{0}, θ_{1} with $0<\theta_{0}<\theta_{1}$ be two given positive constants.
Find the most powerful (MP) level $\alpha=0.05$ test for testing $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta=\theta_{1}$. Calculate its power.
2. Let $X \sim f(x ; \theta)$ where

$$
f(x ; \theta)=2 \theta x+2(1-\theta)(1-x), \quad 0<x<1, \quad \theta \in[0,1] .
$$

(a) (10 points) Based on X, derive a LRT (likelihood ratio test) level α test, $\alpha \in(0,0.5)$, for testing $H_{0}: \theta \in\{0,0.5\} \quad$ v.s. $H_{1}: \theta \in\{0.75,1\}$.
(b) (10 points) Is your answer to part (a) uniformly most powerful (UMP) at level α ? Calculate its power function. Is it unbiased?
(c) (10 points) Is your answer to part (a) also the UMP level α test for testing $H_{0}: \theta \leq 0.5$ v.s. $H_{1}: \theta>0.5$.
3. Let X_{1}, \ldots, X_{n} be i.i.d. random variables from $N\left(\theta, \sigma_{0}^{2}\right), \sigma_{0}^{2}$ is known. Given a constant $\theta_{0} \in R$.
(a) (10 points) Derive a LRT with level α for testing $H_{0}: \theta \geq \theta_{0} \quad$ v.s. $H_{1}: \theta<\theta_{0}$. Is it UMP? And, is it UMPU?
(b) (10 points) Suppose that it is desired to have level $\alpha=0.1$ and power at least .95 at $\theta=\theta_{0}-0.5 \sigma_{0}$, find the smallest sample size n that will achieve this requirement.
4. Let Let $X_{1}, \ldots, X_{n}, n>1$, be a random sample from the p.d.f. $f(x ; \theta)=\theta(1-x)^{\theta-1}$, for $x \in(0,1), \theta \in \Omega=(0, \infty)$; and $\alpha \in(0,1), \theta_{0}>0$ are given.
(a) (10 points) Derive the UMP level $\alpha=0.05$ test of $H_{0}: \theta \leq \theta_{0} \quad$ v.s. $H_{1}: \theta>\theta_{0}$.
(b) (10 points) Calculate its power, and indicate how the sample size n can be determined if it is required that, at $\theta_{1}=10 \theta_{0}$, power of this UMP test be at least 0.9.

Result A: Let X_{1}, \ldots, X_{n} be a random sample from the $U[0, \theta], \theta>0$. Given a $\theta_{0}>0$ and $\alpha \in(0,1)$, the test

$$
\phi(\mathbf{x})=\phi\left(\mathbf{x}_{(\mathbf{n})}\right)= \begin{cases}1 & \text { if } x_{(n)}=\max \left(x_{1}, \ldots, x_{n}\right)>\theta_{0} \text { or } x_{(n)} \leq \theta_{0} \sqrt[n]{\alpha} \\ 0 & \text { otherwise }\end{cases}
$$

is a UMP level α test for testing $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta \neq \theta_{0}$.
5. (10 points) Let Y_{1}, \ldots, Y_{n} are i.i.d. r.v.'s from the common p.d.f. $f(y ; \mu)$, where $f(y ; \mu)=e^{-(y-\mu)}$, for $y \geq \mu$, and $f(y ; \mu)=0$, otherwise; $\mu \in \Omega=R$. Give $\mu_{o} \in R$ and $\alpha \in(0,1)$, utilizing Result A above to derive the UMP level α test for testing $H_{0}: \mu=\mu_{0}$ v.s. $H_{1}: \mu \neq \mu_{0}$.
6. (10 points) Let $X_{1}, \ldots, X_{n}, n>1$, be independent r.v.'s from a population X. With level $\alpha \leq 0.05$, to test
$H_{0}: X \sim N(\theta, 1), 1 \leq \theta \leq 6$ v.s. $H_{1}: X \sim P(\theta), 1 \leq \theta \leq 6$,
is there optimal test here?
If so, indicate what the optimal test should be.
If not, explain briefly.

