Midterm 2 (on line)

★ Answer and mark clearly the questions in the provided answer sheets.
 Write down your name and student's ID on the each answer sheet you used.
 * Note: There are 100 points in this exam.
 No points will be given if no arguments are provided for an answer.
 Good Luck! ~~ Yuling ~.

Use $z_{0.025} = 1.96$, $z_{0.05} = 1.645$, $z_{0.1} = 1.28$, $z_{0.125} = 1.15$, $z_{0.2} = .845$, $z_{0.25} = .675$ $\chi^2_{1,0.05} = 3.84$, $\chi^2_{2,0.05} = 5.99$, $\chi^2_{3,0.05} = 7.8$, $\chi^2_{4,0.05} = 9.5$, $\chi^2_{5,0.05} = 11.07$, $\chi^2_{6,0.05} = 12.59$ $\chi^2_{1,0.95} = .004$, $\chi^2_{2,0.95} = .103$, $\chi^2_{3,0.95} = .352$, $\chi^2_{4,0.95} = .711$, $\chi^2_{5,0.95} = 1.15$, $\chi^2_{6,0.95} = 1.64$, $t_{7,0.05} = 1.9$, $t_{7,0.1} = 1.4$, $t_{8,0.05} = 1.85$, $t_{8,0.1} = 1.39$, $t_{9,0.05} = 1.83$, $t_{9,0.1} = 1.38$ $F_{1,7,0.05} = 5.6$, $F_{1,7,0.1} = 3.6$, $F_{1,8,0.05} = 5.3$, $F_{1,8,0.1} = 3.45$ in this exam.

1. (10 points) A sample of size 1 is taken from the p.d.f.

$$f(x;\theta) = \begin{cases} \frac{2}{\theta^2}(\theta - x) & \text{if } 0 < x < \theta, \\ 0 & \text{otherwise.} \end{cases}$$

Let θ_0 , θ_1 with $0 < \theta_0 < \theta_1$ be two given positive constants. Find the most powerful (MP) level $\alpha = 0.05$ test for testing $H_0: \theta = \theta_0$ v.s. $H_1: \theta = \theta_1$. Calculate its power.

2. Let $X \sim f(x; \theta)$ where

$$f(x;\theta) = 2\theta x + 2(1-\theta)(1-x), \quad 0 < x < 1, \quad \theta \in [0,1].$$

- (a) (10 points) Based on X, derive a LRT (likelihood ratio test) level α test, $\alpha \in (0, 0.5)$, for testing $H_0: \theta \in \{0, 0.5\}$ v.s. $H_1: \theta \in \{0.75, 1\}$.
- (b) (10 points) Is your answer to part (a) uniformly most powerful (UMP) at level α ? Calculate its power function. Is it unbiased?
- (c) (10 points) Is your answer to part (a) also the UMP level α test for testing $H_0: \theta \leq 0.5$ $v.s. H_1: \theta > 0.5$.
- 3. Let X_1, \ldots, X_n be i.i.d. random variables from $N(\theta, \sigma_0^2), \sigma_0^2$ is known. Given a constant $\theta_0 \in R$.
 - (a) (10 points) Derive a LRT with level α for testing $H_0: \theta \ge \theta_0$ v.s. $H_1: \theta < \theta_0$. Is it UMP? And, is it UMPU?
 - (b) (10 points) Suppose that it is desired to have level $\alpha = 0.1$ and power at least .95 at $\theta = \theta_0 0.5 \sigma_0$, find the smallest sample size *n* that will achieve this requirement.
- 4. Let Let $X_1, \ldots, X_n, n > 1$, be a random sample from the p.d.f. $f(x; \theta) = \theta(1-x)^{\theta-1}$, for $x \in (0, 1), \theta \in \Omega = (0, \infty)$; and $\alpha \in (0, 1), \theta_0 > 0$ are given.
 - (a) (10 points) Derive the UMP level $\alpha = 0.05$ test of $H_0: \theta \leq \theta_0 \quad v.s. H_1: \theta > \theta_0$.
 - (b) (10 points) Calculate its power, and indicate how the sample size n can be determined if it is required that, at $\theta_1 = 10 \ \theta_0$, power of this UMP test be at least 0.9.

Result A: Let X_1, \ldots, X_n be a random sample from the $U[0, \theta]$, $\theta > 0$. Given a $\theta_0 > 0$ and $\alpha \in (0, 1)$, the test

$$\phi(\mathbf{x}) = \phi(\mathbf{x}_{(\mathbf{n})}) = \begin{cases} 1 & \text{if } x_{(n)} = \max(x_1, \dots, x_n) > \theta_0 \text{ or } x_{(n)} \le \theta_0 \sqrt[n]{\alpha}, \\ 0 & \text{otherwise} \end{cases}$$

is a UMP level α test for testing H_0 : $\theta = \theta_0 v.s. H_1$: $\theta \neq \theta_0$.

- 5. (10 points) Let Y_1, \ldots, Y_n are *i.i.d.* r.v.'s from the common p.d.f. $f(y; \mu)$, where $f(y; \mu) = e^{-(y-\mu)}$, for $y \ge \mu$, and $f(y; \mu) = 0$, otherwise; $\mu \in \Omega = R$. Give $\mu_o \in R$ and $\alpha \in (0, 1)$, utilizing **Result A** above to derive the UMP level α test for testing $H_0: \mu = \mu_0 v.s. H_1: \mu \ne \mu_0$.
- 6. (10 points) Let X₁,..., X_n, n > 1, be independent r.v.'s from a population X. With level α ≤ 0.05, to test
 H₀: X ~ N(θ, 1), 1 ≤ θ ≤ 6 v.s. H₁: X ~ P(θ), 1 ≤ θ ≤ 6, is there optimal test here ?
 If so, indicate what the optimal test should be. If not, explain briefly.