Answer and mark clearly the questions in the provided answer sheets.
Write down your name and student's ID on the each answer sheet you used.

* Note: No points will be given if no arguments are provided for an answer.

For your information: $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
Good Luck! $\quad \sim$ Yuling $\ddot{\bullet}$

1. (10 points) Find the indicated limit or show it does not exist. If the limiting value is infinite, indicate whether it is ∞ or $-\infty$.

$$
\text { (a) } \lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9} \quad \text { (b) } \lim _{x \rightarrow 0+} \sqrt{x\left(1+\frac{1}{x^{2}}\right)}
$$

2. (10 points) Find the value of the constant A so that the function $f(x)$ will be continuous for all x, where

$$
f(x)= \begin{cases}\frac{x^{2}-1}{x+1} & \text { if } x<-1 \\ A x^{2}+x-3 & \text { if } x \geq-1\end{cases}
$$

3. (10 points) Find all points (both coordinates) on the curve $x^{2}+x y+y^{2}=3$ where the tangent line is (a) horizontal and (b) vertical.
4. Find the absolute maximum and absolute minimum (if any) of
(a) (10 points) $f(t)=3 t^{5}-5 t^{3}$ for $-2 \leq t \leq 0$.
(b) (10 points) $f(x)=\ln \left(4 x-x^{2}\right)$ for $1 \leq x \leq 3$.
5. (10 points) Find the equation of the tangent line to the graph of $f(x)=x-\ln \sqrt{x}$ at the point where $x=1$.
6. (40 points) Find the derivative $\frac{d y}{d x}$ or $f^{\prime}(x)$ where
(a) $y e^{x-x^{2}}=x+y$
(b) $y=\frac{\left(x^{2}+e^{2 x}\right)^{3} e^{-2 x}}{\left(1+x-x^{2}\right)^{2 / 3}}$
(c) $f(x)=\frac{e^{x}+x}{\ln x}$
(d) $f(x)=5^{x^{2}}$
7. (10 points) Estimate your score. "Correct" if error within 10 points.
