Answer and mark clearly the questions in the provided answer sheets.
Write down your name and student's ID on the each answer sheet you used.

* Note: No points will be given if no arguments are provided for an answer. For your information:
- $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$
- $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
- $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$ and $\frac{d}{d x} x^{r}=r x^{r-1}$, for all r
- $\frac{d}{d x} \sin (x)=\cos (x)$ and $\frac{d}{d x} \cos (x)=-\sin (x)$

Good Luck! $\sim \sim$ Yuling $\quad \because$

1. (10 points) Find the constants a and b such that the function $f(x)$ is continuous on the entire real number line, where

$$
f(x)= \begin{cases}2 & x \leq-1 \\ a x+b & -1<x<3 \\ -2 & x \geq 3\end{cases}
$$

2. (10 points) Find the point(s), if any, at which the graph of

$$
f(x)=\frac{x^{2}+8}{x-1}
$$

has a horizontal tangent line.
3. (20 points) Find the indicated limit or show it does not exist. If the limiting value is infinite, indicate whether it is ∞ or $-\infty$.

$$
\text { (a) } \lim _{x \rightarrow 1} \frac{\ln x}{x^{2}-1} \quad \text { (b) } \quad \lim _{x \rightarrow \infty} x^{5} e^{-3 x}
$$

4. (10 points) Find the equation of the tangent line to the curve of $x+y-1=\ln \left(x^{2}+y^{2}\right)$ at the point $(1,0)$.
5. (10 points) Find the absolute maximum and absolute minimum (if any) of $f(t)=3 t^{5}-5 t^{3} \quad$ on the closed interval $-2 \leq t \leq 0$.
6. (40 points) Find the derivative $\frac{d y}{d x}$ or $f^{\prime}(x)$ where
(a) $y e^{x-x^{3}}=3 x+y^{2} \ln \left(\left(x^{2}+1\right)^{4}\right)$
(b) $f(x)=x^{x} 5^{x^{2}}$
(c) $y=\frac{\left(3 x^{2}+e^{4 x}\right)^{3} e^{-4 x}}{\left(1+\cos \left(x^{3}\right)+x^{2}\right)^{2 / 3}}$
(d) $f(x)=\frac{e^{-x^{2}}+x}{\log _{10} x}$
7. (10 points) Show that if a function is differentiable, then it is continuous.
