1. let $(X, Y) \sim N\left(0,0, \sigma_{x}^{2}, \sigma_{y}^{2}, \rho\right)$. Show that $X+Y$ and $X-Y$ are independent if and only if $\sigma_{x}=\sigma_{y}$.
2. Consider the general linear regression model : $\underline{Y}=\mathbf{X} \beta+\underline{\epsilon}$, where $E(\underline{\epsilon})=\underline{0}, \sigma^{2}\{\underline{\epsilon}\}=\sigma^{2} \cdot I_{n \times n}, \underline{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)^{t}, p=k+1<n$.
(a) Show that \underline{b} is a least squares estimate of $\underline{\beta}$ if and only if \underline{b} satisfies the normal equations:

$$
\mathbf{X}^{\mathrm{t}} \underline{\mathbf{Y}}=\mathrm{X}^{\mathrm{t}} \mathbf{X} \underline{\mathbf{b}} .
$$

(b) Now, assume $\operatorname{rank}(\mathbf{X})$ is p. Show that $\mathrm{SSTO}=\underline{Y}^{t} P_{1} \underline{Y}, \mathrm{SSR}=\underline{Y}^{t} P_{2} \underline{Y}$ and $\mathrm{SSE}=$ $\underline{Y}^{t} P_{3} \underline{Y}$ with each $P_{j}, j=1,2,3$ be a $n \times n$, symmetric and idempotent matrix. Find $\operatorname{rank}\left(P_{j}\right), j=1,2,3$.
(c) If, furthermore, assume each $\epsilon_{i}, i=1, \ldots, n$, distributes normally. Show the independence between SSR and SSE.
3. A student fitted a linear regression function for a class assignment. The student plotted the residuals e_{i} against Y_{i} and found a positive relation. When the residuals were plotted against the fitted values \hat{Y}_{i}, the student found no relation. How could the difference arise?
4. Consider the model: $\underline{Y}=\mathbf{X} \beta+\underline{\epsilon}$, where $E(\underline{\epsilon})=\underline{0}, \sigma^{2}\{\underline{\epsilon}\}=\sigma^{2} \cdot I_{n \times n}$, the $n \times p$ design matrix \mathbf{X} has rank $p, p<n$.
Now, consider the model : $\underline{Y}^{*}=\mathbf{X}^{*} \beta+\underline{\epsilon}^{*}$, where $\underline{Y}^{*}=A \underline{Y}, \mathbf{X}^{*}=\mathbf{A X}, \underline{\epsilon}^{*}=A \underline{\epsilon}$ and A is a known $n \times n$ orthogonal matrix.
Show that
(a) $E\left(\underline{\epsilon}^{*}\right)=\underline{0}, \sigma^{2}\left\{\underline{\epsilon}^{*}\right\}=\sigma^{2} \cdot I_{n \times n}$
(b) $\underline{b}=\underline{b}^{*}$ and MSE $=\mathrm{MSE}^{*}$,
where \underline{b} and \underline{b}^{*} are the least squares estimators of $\underline{\beta}$; and MSE and MSE* are the unbiased estimators of σ^{2} obtained from the two models, respectively.
5. Observation vector $\underline{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)^{t}$ has expected mean $\underline{\theta}=(2 \mu, \mu, 4 \mu)^{t}$, where μ is a unknown parameter.
(a) Rewrite the case as in a linear regression model formulation: that is to find \mathbf{X} and β such that $E(\underline{Y})=\mathbf{X} \beta$.
(b) Let $\Omega=\left\{\underline{\theta}: \underline{\theta}=(2 \mu, \mu, 4 \mu)^{t}, \mu \in R\right\}$. What is the space Ω here? Give the projection matrix H.
(c) Let $\underline{a}=\left(a_{1}, a_{2}, a_{3}\right)^{t}$ be any vector such that $\underline{a}^{t} \underline{Y}$ be a linear unbiased estimator for μ. Find the projection of \underline{a} onto Ω.
(d) Now, assume the the Gauss-Markov conditions hold for \underline{Y}, find the BLUE for μ.

