AM_40300 Regression Analysis Instructor: Yu-Ling Tseng Homework - Due on 20201119

- 1. let $(X, Y) \sim N(0, 0, \sigma_x^2, \sigma_y^2, \rho)$. Show that X + Y and X Y are independent if and only if $\sigma_x = \sigma_y$.
- 2. Consider the general linear regression model : $\underline{Y} = \mathbf{X}\underline{\beta} + \underline{\epsilon}$, where $E(\underline{\epsilon}) = \underline{0}, \sigma^2{\underline{\epsilon}} = \sigma^2 \cdot I_{n \times n}, \underline{\beta} = (\beta_0, \beta_1, \dots, \beta_k)^{\overline{t}}, p = k + 1 < n$.
 - (a) Show that \underline{b} is a least squares estimate of $\underline{\beta}$ if and only if \underline{b} satisfies the normal equations:

$$\mathbf{X}^{\mathbf{t}}\underline{\mathbf{Y}} = \mathbf{X}^{\mathbf{t}}\mathbf{X}\underline{\mathbf{b}}.$$

- (b) Now, assume rank(**X**) is *p*. Show that SSTO= $\underline{Y}^t P_1 \underline{Y}$, SSR= $\underline{Y}^t P_2 \underline{Y}$ and SSE= $\underline{Y}^t P_3 \underline{Y}$ with each P_j , j = 1, 2, 3 be a $n \times n$, symmetric and idempotent matrix. Find rank(P_j), j = 1, 2, 3.
- (c) If, furthermore, assume each ϵ_i , i = 1, ..., n, distributes normally. Show the independence between SSR and SSE.
- 3. A student fitted a linear regression function for a class assignment. The student plotted the residuals e_i against Y_i and found a positive relation. When the residuals were plotted against the fitted values \hat{Y}_i , the student found no relation. How could the difference arise?
- 4. Consider the model: $\underline{Y} = \mathbf{X}\underline{\beta} + \underline{\epsilon}$, where $E(\underline{\epsilon}) = \underline{0}$, $\sigma^2 \{\underline{\epsilon}\} = \sigma^2 \cdot I_{n \times n}$, the $n \times p$ design matrix \mathbf{X} has rank p, p < n. Now, consider the model : $\underline{Y}^* = \mathbf{X}^*\underline{\beta} + \underline{\epsilon}^*$, where $\underline{Y}^* = A\underline{Y}$, $\mathbf{X}^* = \mathbf{A}\mathbf{X}$, $\underline{\epsilon}^* = A\underline{\epsilon}$ and A is a known $n \times n$ orthogonal matrix. Show that
 - (a) $E(\underline{\epsilon}^*) = \underline{0}, \ \sigma^2 \{\underline{\epsilon}^*\} = \sigma^2 \cdot I_{n \times n}$
 - (b) $\underline{b} = \underline{b}^*$ and MSE=MSE^{*}, where \underline{b} and \underline{b}^* are the least squares estimators of $\underline{\beta}$; and MSE and MSE^{*} are the unbiased estimators of σ^2 obtained from the two models, respectively.
- 5. Observation vector $\underline{Y} = (Y_1, Y_2, Y_3)^t$ has expected mean $\underline{\theta} = (2\mu, \mu, 4\mu)^t$, where μ is a unknown parameter.
 - (a) Rewrite the case as in a linear regression model formulation: that is to find **X** and β such that $E(\underline{Y}) = \mathbf{X}\beta$.
 - (b) Let $\Omega = \{\underline{\theta} : \underline{\theta} = (2\mu, \mu, 4\mu)^t, \ \mu \in R\}$. What is the space Ω here? Give the projection matrix H.
 - (c) Let $\underline{a} = (a_1, a_2, a_3)^t$ be any vector such that $\underline{a}^t \underline{Y}$ be a linear unbiased estimator for μ . Find the projection of \underline{a} onto Ω .
 - (d) Now, assume the Gauss-Markov conditions hold for \underline{Y} , find the BLUE for μ .
 - (e) If, additionally, Y₁, Y₂, Y₃ are assumed independent normally distributed with common unknown variance σ².
 Show how to test the hypothesis H₀ : μ = 0 v.s. H₁ : μ ≠ 0.

And the following problems in textbook:

Ch.2: 27, 28 (a); Ch. 6: 4, 5 (a, b), 6 (a, b), 7, 15 (c), 16 (a), 26