1. For $n=1,2,3, \ldots$, let X_{n} be independent r.v.'s such that

$$
P\left(X_{n}=1\right)=p_{n}, \quad P\left(X_{n}=0\right)=1-p_{n} .
$$

Under what conditions on the p_{n} 's, as $n \longrightarrow \infty$, does $X_{n} \xrightarrow{p} 0$?
2. Let $X_{n}, n=1,2, \ldots$, be i.i.d. r.v.'s such that $E\left(X_{n}\right)=\mu, \operatorname{Var}\left(X_{n}\right)=\sigma^{2}$, both finite. Show that $E(\bar{X}-\mu)^{2} \longrightarrow 0$, that is $\bar{X} \xrightarrow{\text { q.m. }} \mu$, as $n \longrightarrow \infty$.
3. For $n=1,2, \ldots$, let X_{n}, Y_{n} be r.v.'s such that, as $n \longrightarrow \infty, E\left(X_{n}-Y_{n}\right)^{2} \longrightarrow 0$ and suppose that $X_{n} \xrightarrow{\text { q.m. }} X$ for some r.v. X. Then show that $Y_{n} \xrightarrow{\text { q.m. }} X$, as $n \longrightarrow \infty$.
4. Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be i.i.d. $U(0,1)$ r.v.'s, and for each n, set $Y_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$, $Z_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}, U_{n}=n Y_{n}, V_{n}=n\left(1-Z_{n}\right)$. Show that, as $n \longrightarrow \infty$, one has
(a) $Y_{n} \xrightarrow{p} 0$;
(b) $Z_{n} \xrightarrow{p} 1$;
(c) $U_{n} \xrightarrow{d} U$;
(d) $V_{n} \xrightarrow{d} U$, where $U \sim f(u)=e^{-u}, \quad u>0$, a (negative) exponential distribution with parameter 1 .
5. Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be i.i.d. r.v.'s and suppose that the k-th population moment $E\left(X_{1}^{k}\right)=\theta_{k}$ is finite for a given positive integer k. For $n=1,2, \ldots$, let

$$
m_{k}(X)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}
$$

be the k-th sample moment of the X_{i} 's, show that $m_{k}(X) \xrightarrow{p} \theta_{k}$, as $n \longrightarrow \infty$. Thus, show that for i.i.d. r.v.'s with finite variance, the sample variance converges in probability to the population variance.

