Final

★ Answer and mark clearly the questions in the provided answer sheets.
Write down your name and student's ID on the each answer sheet you used.
* Note: There are 125 points in this exam.
No points will be given if no arguments are provided for an answer.
Good Luck and happy winter break ! ~~ Yes ~

1. (10 points) Let $X_1, \ldots, X_n, n \ge 3$, be *i.i.d* random variables with p.d.f. $f(\cdot; \mu, \sigma)$ given by

$$f(x;\mu,\sigma) = \frac{1}{\sigma} \exp\left(-\frac{x-\mu}{\sigma}\right), \quad x \ge \mu \quad \theta = (\mu,\sigma) \in \Omega = R \times (0,\infty).$$

Find a MOME (method of moments estimator) for $\eta(\theta) = e^{-\mu} \log(\sigma)$.

2. (10 points) Suppose that $n, n \geq 3$, random observations were taken from the population $X \sim N(\theta, 1)$ in a study from which a research paper was published. Usually, the values of the original observations will not be given in a published paper. If, say, from that paper you only know Y: the number among those n observations which is greater than 0.

Base on Y, find the MLE (maximum likelihood estimator) of θ .

- 3. $X_1, \ldots, X_n, n \ge 3$, be an *i.i.d* sample from $N(\mu, \sigma^2)$, both $\mu \in R$ and $\sigma > 0$ are unknown. Let $\bar{X} = \sum_{i=1}^n X_i/n$ and $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2/(n-1)$, where $(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$.
 - (a) (10 points) Show that the statistic $T(X) = (\bar{X}, S^2)$ is sufficient for $\theta = (\mu, \sigma^2)$ and is complete.
 - (b) (20 points) Find the UMVUE (uniformly minimum variance unbiased estimator) for μ^2 . Investigate if the Cramér-Rao bound is attained.
- 4. (10 points) Let X_1, \ldots, X_n , $n \ge 6$, be an *i.i.d* sample from B(1, p), $p \in [0, 1]$. Find the UMVUE of $p^2(1-p)^3$.
- 5. Let $X_1, \ldots, X_n, n \ge 3$, be *i.i.d.* random variables with *p.d.f.* $f(x; \theta) = \theta \exp(-\theta x), x > 0, \theta \in \Omega = (0, \infty).$
 - (a) (20 points) Find the UMVUE of $\theta.$ Investigate if the Cramér-Rao bound is attained.
 - (b) (10 points) Let $\eta(\theta) = f(c; \theta)$ and c > 0 a given constant. Find the MLE of $\eta(\theta)$.
- 6. Suppose that, $n \ge 3$, for i = 1, ..., n, $X_i \sim P(c_i \theta)$, where $c_i > 0$, i = 1, 2, ..., n, are given positive constants, and assume that $X_1, X_2, ..., X_n$ are independent.
 - (a) (10 points) Calculate the Cramér-Rao lower bound when estimating θ .
 - (b) (10 points) Find the MLE of θ , and prove (or disprove) it is the UMVUE of θ .
- 7. (15 points) Let $X_1, \ldots, X_n, n \ge 3$, be *i.i.d.* random variables with *p.d.f.* $f(x; \theta) = \theta x^{\theta-1}, 0 < x < 1, \theta \in \Omega = (0, \infty).$ Find the UMVUE of θ