* Answer and mark clearly the questions in the provided answer sheets.

Write down your name and student's ID on the each answer sheet you used.

* Note: There are 115 points in this exam.

No points will be given if no arguments are provided for an answer.

Good Luck!

 $\sim \sim Yuling$

- 1. (10 points) Let X_1, \ldots, X_n be an *i.i.d* sample from $P(\lambda)$, $\lambda > 0$. Show that the Fisher information number (X_1, \ldots, X_n) contains about $\sqrt{\lambda}$ is independent of λ .
- 2. (10 points) Let X_1, \ldots, X_n be *i.i.d* random variables from the Gamma (α, β) , find a MOME (method of moments estimator) of α/β .
- 3. (10 points) Let X_1, \ldots, X_n be i.i.d random variables with p.d.f. $f(\cdot; \theta_1, \theta_2)$ given by

$$f(x; \theta_1, \theta_2) = \frac{1}{\theta_2} \exp\left(-\frac{x - \theta_1}{\theta_2}\right), \quad x \ge \theta_1, \quad \theta = (\theta_1, \theta_2)' \in \Omega = R \times (0, \infty).$$

Find the MLE (maximum likelihood estimator) for $\eta(\theta) = \theta_1 \times \sqrt{\theta_2}$.

4. (10 points) Let X be a random variable with one of these p.d.f.'s: if $\theta = 0$ then

$$f(x;\theta) = \begin{cases} 2 - 4x & \text{if } 0 < x < 1/2, \\ 4x - 2 & \text{if } 1/2 \le x < 1; \end{cases}$$

if $\theta = 1$ then

$$f(x; \theta) = \begin{cases} 2(1-x) & \text{if } 0 < x < 1, \\ 0 & \text{otherwise;} \end{cases}$$

while if $\theta = 2$

$$f(x; \theta) = \begin{cases} 1 & \text{if } 0 < x < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Find the MLE (maximum likelihood estimator) of $\eta(\theta) = \theta^2$ and check if it is unbiased.

- 5. (10 points) Let $X_1, \ldots, X_n, n > 3$, be an *i.i.d* sample from $B(1, p), p \in [0, 1]$. Find the UMVUE (uniformly minimum variance unbiased estimator) of $p(1 p)^2$.
- 6. X_1, \ldots, X_n be an i.i.d sample from $N(\mu, \sigma^2)$, both $\mu \in R$ and $\sigma > 0$ are unknown. Let $\bar{X} = \sum_{i=1}^n X_i/n$ and $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2/(n-1)$.
 - (a) (10 points) Show that the statistic $T(X)=(\bar{X},S^2)$ is sufficient for (μ,σ^2) and is complete.
 - (b) (10 points) Find the UMVUE for μ^2 .
 - (c) (10 points) Now, if $\sigma^2 = \mu^2$, hence the only unknown parameter is μ . Is the statistic T(X) defined in (a) still sufficient? Is it complete?

Final

20160107

- 7. (15 points) Let $X_1, \ldots, X_n, n > 1$, be i.i.d. random variables with p.d.f. $f(x;\theta) = \theta \exp(-\theta x), x > 0, \theta \in \Omega = (0,\infty).$ Find the UMVUE of θ . Investigate if the Cramér-Rao bound is attained.
- 8. (20 points) Let X_1, \ldots, X_n be *i.i.d* random variables from $U[0, \theta], \theta > 0$. Find the UMVUE, MLE for θ , respectively; compare them by calculating their MSE's (mean squared error).