| The Problem Formulation | Theoretical Results | Numerical Results | Conclusions |
|-------------------------|---------------------|-------------------|-------------|
|                         |                     |                   |             |
|                         |                     |                   |             |

# Power Estimation for Testing Normal Means

C. Andy Tsao Yu-Ling Tseng\* National Dong Hwa University, Taiwan

ISI 2007 at Lisboa, Portugal

通 ト イヨ ト イヨト

э

C. Andy Tsao, Yu-Ling Tseng\* National Dong Hwa University, Taiwan

| The Problem Formulation | Theoretical Results | Numerical Results | Conclusions |
|-------------------------|---------------------|-------------------|-------------|
|                         |                     |                   |             |

A B + A
 A
 B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 > > = > >

2

## Outline

Introduction

The Problem Formulation

Theoretical Results

Numerical Results

Conclusions

C. Andy Tsao, Yu-Ling Tseng\* National Dong Hwa University, Taiwan Power Estimation for Testing Normal Means

## Hypothesis Tests

- P-value : data-sensitive "evidence" against the null Berger & Sellke , Berger & Delampady, Casella & Berger '87 \* p-value and the Bayes estimates are irreconcilable, two-sided / reconcilable, one-sided
- Observed power : strength of the experiment Power analysis:
  - \* not small p-value + high observed power
  - $\longrightarrow$  strong evidence supporting null hypothesis.

・聞き ・ ヨキ ・ ヨキ

3

- \* small p-value + high observed power
- $\rightarrow$  results: significant & test: very powerful

Gillett '96, Hoening & Heisey, Lenth 2001

## Hypothesis Tests

- P-value : data-sensitive "evidence" against the null Berger & Sellke , Berger & Delampady, Casella & Berger '87 \* p-value and the Bayes estimates are irreconcilable, two-sided / reconcilable, one-sided
- Observed power : strength of the experiment Power analysis:
  - \* not small p-value + high observed power
  - $\longrightarrow$  strong evidence supporting null hypothesis.

伺 と く ヨ と く ヨ と

3

- \* small p-value + high observed power
- $\rightarrow$  results: significant & test: very powerful

Gillett '96, Hoening & Heisey, Lenth 2001

 $\hookrightarrow$  Q: Validity of such power analysis? How?

|           | The Problem Formulation                                 | Theoretical Results                  | Numerical Results                                    | Conclusions |
|-----------|---------------------------------------------------------|--------------------------------------|------------------------------------------------------|-------------|
|           |                                                         |                                      |                                                      |             |
| Basic set | ttings                                                  |                                      |                                                      |             |
| ► M       | lodel: $X_1, \cdots, X_n$ iid                           | $\sim N(\theta, \sigma^2), \sigma^2$ | > 0: known                                           |             |
| ► T       | esting problems:                                        |                                      |                                                      |             |
|           | $H_0: 	heta$                                            | $\leq$ 0 vs. $H_1: e$                | 9 > 0,                                               | (1)         |
|           | $H_0: \theta$                                           | $= 0  vs.  H_1: t$                   | $\theta \neq 0.$                                     | (2)         |
| ► T       | he UMP $lpha$ level test f                              | or (1) is to re                      | ject <i>H</i> 0 if                                   |             |
|           | $rac{ar{X}}{\sigma_n} > z_{lpha}, \qquad \mathrm{pot}$ | ower ft $\beta_1(	heta) =$           | $=\Phi\left(\frac{\theta}{\sigma_n}-z_\alpha\right)$ | (3)         |
| Т         | he UMPU $\alpha$ level test                             | for (2) is to                        | reject <i>H</i> 0 if                                 |             |
|           | $ \bar{X} $                                             | $(\theta)$                           | $(-\theta)$                                          |             |

$$\frac{|X|}{\sigma_n} > z_{\alpha/2}, \ \beta_2(\theta) = \Phi\left(\frac{\theta}{\sigma_n} - z_{\alpha/2}\right) + \Phi\left(\frac{-\theta}{\sigma_n} - z_{\alpha/2}\right)$$
(4)

5 DQC

w/ 
$$\sigma_n^2 = \sigma^2/n$$
,  $\Phi(z_{\alpha}) = 1 - \alpha$ ,  $\Phi(x)$  cdf of  $N(0, 1)$ 

C. Andy Tsao, Yu-Ling Tseng\* National Dong Hwa University, Taiwan

## Observed powers

### The usual observed powers are

$$\beta_{1}(\hat{\theta}) = \Phi\left(\frac{\hat{\theta}}{\sigma_{n}} - z_{\alpha}\right) = P_{\hat{\theta}}\left(\frac{\bar{X}}{\sigma_{n}} > z_{\alpha}\right)$$
(5)  
$$\beta_{2}(\hat{\theta}) = \Phi\left(\frac{\hat{\theta}}{\sigma_{n}} - z_{\alpha/2}\right) + \Phi\left(\frac{-\hat{\theta}}{\sigma_{n}} - z_{\alpha/2}\right)$$
$$= P_{\hat{\theta}}\left(\frac{|\bar{X}|}{\sigma_{n}} > z_{\alpha/2}\right)$$
(6)

< 🗇 →

-

э.

2

w/
$$\hat{\theta} = \bar{x} = \sum_i x_i / n$$
 MLE of  $\theta$ 

 $\hookrightarrow$  observed powers are MLE of the powers.

C. Andy Tsao, Yu-Ling Tseng  $^{\ast}~$  National Dong Hwa University, Taiwan

## A key reduction

Dalal & Hall '83, Tsao 2006

### Lemma

Let X be normally distributed and let  $\beta(\theta)$  be a bounded and integrable function then for any  $\pi(\theta) \in \Gamma_{BCPS}$ ,

$$\sup_{\pi \in \Gamma_{BCPS}} E_{\pi(\theta|x)} \beta(\theta) = \sup_{\pi \in \Gamma_{NORS}} E_{\pi(\theta|x)} \beta(\theta).$$
(7)

### where

$$\Gamma_{NORS} = \{ \pi | \pi = \frac{1}{2} (\pi_+ + \pi_-) \text{ w/ } \pi_+ \sim N(\mu, \tau^2), \pi_- \sim N(-\mu, \tau^2) \}.$$

C. Andy Tsao, Yu-Ling Tseng\* National Dong Hwa University, Taiwan

|                           | The Problem Formulation                                                                                                  | Theoretical Results                                            | Numerical Results                                | Conclusions     |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-----------------|
|                           |                                                                                                                          |                                                                |                                                  |                 |
| One-sideo                 | l problems                                                                                                               |                                                                |                                                  |                 |
| For $\bar{x} >$           | • 0, and define $a \lor b$ =                                                                                             | = max( <i>a</i> , <i>b</i> ).                                  |                                                  |                 |
| •                         |                                                                                                                          |                                                                |                                                  |                 |
| 7                         | $\sup_{\boldsymbol{\pi}\in\Gamma_{BCPS}}E_{\pi(\boldsymbol{\theta} \bar{\boldsymbol{x}})}\beta_{1}(\boldsymbol{\theta})$ | $= \sup_{\pi \in \Gamma_{N(0,\tau^2)}} E_{\tau}$               | $_{\tau(\theta ar{x})}eta_1(	heta) \lor 1/$      | <sup>′</sup> 2, |
| $\blacktriangleright \pi$ | $\in \Gamma_{\mathcal{N}(0,\tau^2)} \implies E$                                                                          | $\overline{\xi}_{\pi(	heta ar{x})}eta_1(	heta)$ increa         | ases in $	au^2$ .                                |                 |
| •                         |                                                                                                                          |                                                                |                                                  |                 |
|                           | $\sup_{\pi\in\Gamma_{N(0,\tau^{2})}}E_{\pi(\theta \bar{x})}\beta_{1}(\theta$                                             | $) = \lim_{\pi \sim \mathcal{N}(0,\tau^2), \tau^2 \to \tau^2}$ | $_{\infty}E_{\pi(\theta \bar{x})}eta_{1}(	heta)$ | (8)             |
|                           |                                                                                                                          | $= E_{L(\theta \bar{x})}\beta_1(\theta)$                       |                                                  | (9)             |
|                           | w/ $L(	heta ar{x})$ i                                                                                                    | is the likelihood f                                            | unction given $\bar{X}$                          | $= \bar{x}.$    |
|                           |                                                                                                                          | 4                                                              |                                                  | E DQC           |

C. Andy Tsao, Yu-Ling Tseng\* National Dong Hwa University, Taiwan

## Setting for simulations

- $\blacktriangleright$   $a = a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$ ,  $a_5$  and  $\beta = \beta_0$ ,  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$
- ▶ r = 3, 5, 7, 9, 11, 13, 15, 25 (Hwang and Casella, 1982)
- $\sim \alpha = 0.25, 0.1, 0.05$
- Simulation number:  $M = 10^8$

## Table:

| Notation     | Dimension | Notation       | Dimension |
|--------------|-----------|----------------|-----------|
| — o —        | r=3       | $-\Diamond -$  | r=11      |
| $- \Delta -$ | r=5       | $-\nabla -$    | r=13      |
| -+-          | r=7       | $-\boxtimes -$ | r=15      |
| $- \times -$ | r=9       | - *            | r=25      |

#### ・聞き ・ ヨキ ・ ヨキ 3

C. Andy Tsao, Yu-Ling Tseng\* National Dong Hwa University, Taiwan

| The Problem Formulation | Theoretical Results | Numerical Results | Conclusions |
|-------------------------|---------------------|-------------------|-------------|
|                         |                     |                   |             |

Table: Theoretical values of  $D_*$ .

|   |      | $\alpha = 0.05$ |        | $\alpha = 0.1$ |        |
|---|------|-----------------|--------|----------------|--------|
| р | В    | А               | $D_*$  | A              | $D_*$  |
| 3 | 1    | 9.52            | 49.208 | 7.43           | 45.849 |
| 4 | 0.5  | 6.27            | 52.228 | 4.99           | 49.753 |
| 5 | 1/3  | 5.09            | 57.159 | 4.20           | 55.542 |
| 6 | 0.25 | 4.46            | 64.588 | 3.79           | 60.984 |

Note: *B* is taken to be  $\frac{1}{p-2}$  here.

・ロト ・四ト ・ヨト ・ヨト

= 990

C. Andy Tsao, Yu-Ling Tseng\* National Dong Hwa University, Taiwan

2



Figure: Observed power versus generalized Bayes estimate: 1-sided problem

C. Andy Tsao, Yu-Ling Tseng\* National Dong Hwa University, Taiwan

## Other theoretical results

The limiting cases.  $(m \longrightarrow \infty)$ 

• Consider normal priors and let  $w_{\infty}(t) = \lim_{m \to \infty} w(t)$ , then

$$\begin{split} &\lim_{\tau^2 \to \infty} E_{\lambda(t|\mu,\tau^2;\bar{x})} w_{\infty}(t) = 1 - \alpha, \\ &\lim_{\mu \to 0} E_{\lambda(t|\mu,\tau^2;\bar{x})} w_{\infty}(t) = \Phi \left[ \rho^{1/2} \left( \left( \frac{\sigma_n^2}{\sigma_n^2 + \tau^2} \right) \bar{x} + \sigma_n z_{\alpha} \right) \right] \end{split}$$

E 990

C. Andy Tsao, Yu-Ling Tseng\* National Dong Hwa University, Taiwan

## Conclusions

We study the post-data performance of one-sided normal tolerance intervals.

\* conf. coeff. tends to be more extreme than Bayes est.'s \* discrepancy is more marked as sample size *n* increases.

- Our result also hints a way to choose/construct the prior or mixing distribution in the de Finetti's representation theorem.
   The practtice of using beta prior as the "natural" priors for 0-1 r.v.'s, in this context, is justifiable since the derived λ(t|μ, τ<sup>2</sup>; x̄) can be well-approximated by a beta distribution.
   Nonetheless, λ(t|μ, τ<sup>2</sup>; x̄) has better analytical tractability.
- Further research in unknown variance and two-sided tolerance intervals are of importance yet demands more involved calculations.

| The Problem Formulation | Theoretical Results | Numerical Results | Conclusions |
|-------------------------|---------------------|-------------------|-------------|
|                         |                     |                   |             |

# Thanks for your attention!

2

C. Andy Tsao, Yu-Ling Tseng\* National Dong Hwa University, Taiwan