

Building and Applying Logistic Regression Models

Outline

I Strategies for model selectionI





Building and Applying Logistic Regression Models



Building and Applying Logistic Regression Models

Strategies in model selection

How many predictors can you use?

Data are unbalanced on Y if y=1 occurs relatively few times or
if y=0 occurs relatively few times.

I One guideline: suggest at least 10 outcomes of each type
should occur for every X term. e.g, if y=1 only 30 times
out of n=1000 the model should contain no more than 3
predictors.
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Strategies in model selection

Example: Horseshoe crabs revisited

4 predictors: color,spine,weight(wt),and width(w).

response:

y =

�
1 if at least one satellites
0 o.w

model : logit[P(Y = 1)] = a + b1 � wt + b2 � w + b3 � c1 +
b4 � c2 + b5 � c3 + b6 � s1 + b7 � s2

H0 : b1 = b2 = b3 = b4 = b5 = b6 = b7 = 0

G 2(M) = 40.6 with df=7(p-value<0.0001).

) since P-value is small, there is extremely strong evidence
that at least one predictors has an e�ect.
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Strategies in model selection

Example: Horseshoe crabs revisited

Coe�cients:

Estimate Std. Error z value Pr(> jzj)
(Intercept) -9.2728 3.8275 -2.423 0.01541 *

color1 1.6087 0.9344 1.722 0.08512 .
color2 1.5057 0.5659 2.661 0.00779 **
color3 1.1198 0.5924 1.890 0.05874 .
spine1 -0.4003 0.5016 -0.798 0.42479
spine2 -0.4963 0.6287 -0.790 0.42973
weight 0.8257 0.7025 1.175 0.23984
width 0.2631 0.1949 1.350 0.17703
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Strategies in model selection

Example: Backward elimination for horseshoe crabs

Models Deviances
Model Deviance df AIC Compared Di�erence p-value

1 173.7 155 209.7 - - -
2 186.6 166 200.6 (2)�(1) 12.9(df=11) 0.2999

3a 208.8 167 220.8 (3a)�(2) 22.2(df=1) 2.46e-06
3b 194.4 169 202.4 (3b)�(2) 7.8(df=3) 0.0503

3c 187.5 168 197.5 (3c)�(2) 0.9(df=2) 0.6376
4a 212.1 169 220.1 (4a)�(3c) 24.6(df=1) 7.05e-07
4b 194.5 171 198.5 (4b)�(3c) 7.0(df=3) 0.0719

5 188.0 170 194.0 (5)�(3c) 0.5(df=2) 0.7788
6 225.8 172 227.8 (6)�(5) 37.8(df=2) 6.19e-09
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Summarizing Predictive Power

Classi�cation Table of horseshoe crabs (P.142)

1 Choosing cuto� points:

I For this data, the proportion of Y=1 is 111
111+62 = 0.642

I Cuto� points p0 may be 0.5 or 0.642

2 For width and color as predictors, �t a logistic regression.
Y s W+C

3 Predict Y for each cuto� points.
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Summarizing Predictive Power

Classi�cation Table of horseshoe crabs (P.142)

1 Choosing cuto� points:

I For this data, the proportion of Y=5 is 111
111+62 = 0.642

I Cuto� points p0 may be 0.5 or 0.642

2 For width and color as predictors, �t a logistic regression.
Y s W+C

3 Predict Y for each cuto� points.
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Summarizing Predictive Power

Classi�cation Table of horseshoe crabs (P.142)
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Summarizing Predictive Power

ROC curves

I Plot of (1-speci�city,sensitivity)

I More informative than classi�cation table,for use all
possible p0 to summarize predictive power.

I The ROC curves pass (0,0) and (1,1)

I Concordance index = Area of the ROC curve
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Summarizing Predictive Power

ROC curves
For p0=0.642, ROC curves pass (0.5,0.865) (*)
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Summarizing Predictive Power

ROC curves
ROC curve
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And the concordance index = 0.7714
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Summarizing Predictive Power

Models concordance index

Model Concordance index
CS+CW+SW 0.8059

C+S+W 0.7749
C+S 0.6694

S+W 0.7427
C+W 0.7714

C 0.6386
W 0.7424

C=dark+W 0.7720
None 0.5000

) Choose a model simple, but concordance index higher.
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Summarizing Predictive Power

Models concordance index

Model Concordance index
CS+CW+SW 0.8059

C+S+W 0.7749
C+S 0.6694

S+W 0.7427
C+W 0.7714

C 0.6386
W 0.7424

C=dark+W 0.7720
None 0.5000

) Choose a model simple, but concordance index higher.
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Model checking

L-R Model Comparison Test
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Model checking

Example: AZT on AIDS symptoms table
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Model checking

Example: AZT on AIDS symptoms table

AZT Symptoms Race Freq Pi hat Fitted

Yes Yes White 14 0.1496 16

No Yes White 32 0.2654 30

Yes Yes Black 11 0.1427 9

No Yes Black 12 0.2547 14

Yes No White 93 0.8504 91

No No White 81 0.7346 83

Yes No Black 52 0.8573 54

No No Black 43 0.7453 41

I G 2(M) = 1.3835 with df=1, and P-value = 0.2395059

) Don’t reject H0, model �t well.
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Checking �t

Grouped Data and Ungrouped Data

I The group data are the totals of successes and failures at
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Checking �t

Standardized residual

standardized residual =yi�ni �pi
SE = yi�ni �pip

(ni �pi (1� �p)(1�hi ))

I hi : the observation’s leverage, it’s element from the
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Checking �t

I We would hope the admissions decision is independent of
gender, and we treat Yik as independent binomial variates
for nik trials with success probabilities pik .

I The model with no gender e�ect, given department

=) logit(pik) = a + bD
k

I Simpson’s Paradox ?
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Checking �t

I We would hope the admissions decision is independent of
gender, and we treat Yik as independent binomial variates
for nik trials with success probabilities pik .

I The model with no gender e�ect, given department

=) logit(pik) = a + bD
k

I Simpson’s Paradox ?
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Checking �t
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Checking �t

In
uence Diagnostics for Logistic Regression

The observation could be a single binary response or a
binomial response for a set of subjects(grouped data).

When the certain observation is deleted

I the change divided by it’s standard error :Dfbeta

I The change in a joint CI displacement diagnostic : c.

I The change X 2 or G 2 in G-O-F statistics.
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Checking �t

Example:Heart Disease and Blood Pressure

I pi i
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Checking �t
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Checking �t
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Checking�tConclusion

IForward,Backward,AIC,predictivepowerIUsingL-RtestandG-O-FtesttoselectasuitablemodelIResidualsIIn
uenceDiagnosticsIOutlier
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Checking �t

Thanks for your attention!
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