- $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$
- $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
- $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$

Good Luck! $\sim \sim$ Yuling (Yes) $\quad \ddot{ }$

1. (10 points) Find the domain and range of the function

$$
f(x)=\frac{|x|}{x}
$$

2. (10 points) Determine whether the function $f(x)=|x+3|$ is one-to-one. If it is, find its inverse function.
3. (10 points) Describe the interval(s) on which the function $f(x)$ is continuous. If there are any discontinuities, determine whether they are removable.

$$
f(x)=\frac{x+4}{3 x^{2}-12}
$$

4. (30 points) Find the indicated limit or show it does not exist. If the limiting value is infinite, indicate whether it is ∞ or $-\infty$.

$$
\text { (a) } \lim _{x \rightarrow-3^{-}} \frac{|x+3|}{x+3} \text { (b) } \lim _{x \rightarrow-2^{+}} \frac{3}{x^{2}-4} \text { (c) } \lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}
$$

5. (20 points) Find an equation of the tangent line to the given graph at the given point.

$$
\text { (a) } f(x)=\frac{(3 x-2)(6 x+5)}{2 x-3} \quad ; \text { at }(-1,-1) \quad \text { (b) } y^{2}\left(x^{2}+y^{2}\right)=2 x^{2} \quad ; \text { at }(1,1)
$$

6. (10 points) Find $f^{\prime \prime}(1), f(x)=\left(x^{3}-2 x\right)^{3}$
7. (10 points) Find the point(s), if any, at which the graph of

$$
f(x)=\frac{x}{\sqrt{2 x-1}}
$$

has a horizontal tangent line.

