- $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$
- $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
- $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$ and $\frac{d}{d x} x^{r}=r x^{r-1}$, for all r
- $\frac{d}{d x} \sin (x)=\cos (x), \frac{d}{d x} \cos (x)=-\sin (x)$
- $\frac{d}{d x} \tan (x)=\sec ^{2}(x), \frac{d}{d x} \sec (x)=\tan (x) \sec (x)$
- $\sin ^{2}(x)+\cos ^{2}(x)=1$ and $\tan ^{2}(x)+1=\sec ^{2}(x)$
- $\tan (x)=\frac{\sin (x)}{\cos (x)}, \cot (x)=\frac{1}{\tan (x)}, \sec (x)=\frac{1}{\cos (x)}, \csc (x)=\frac{1}{\sin (x)}$

Good Luck!
$\sim \sim$ Yuling $\quad \ddot{ }$

1. (30 points) Find an equation of the tangent line to the given graph at the given point.
(a) $f(t)=\left(t^{2}-9\right) \sqrt{t+2} \quad$; at $(-1,-8)$
(b) $f(x)=\frac{(3 x-2)(6 x+5)}{2 x-3}$; at $(-1,-1)$
(c) $y^{2}\left(x^{2}+y^{2}\right)=2 x^{2} \quad$; at $(1,1)$
2. (20 points) (a) Find $\frac{d y}{d x}, y=\cot \left(8 x^{2}+3\right) \quad$ (b) Find $f^{\prime \prime}(1), f(x)=\left(x^{3}-2 x\right)^{3}$
3. (10 points) Find the point(s), if any, at which the graph of

$$
f(x)=\frac{x}{\sqrt{2 x-1}}
$$

has a horizontal tangent line.
4. (20 points) Find all relative extrema and points of inflection of

$$
\begin{array}{ll}
\text { (a) } g(x)=x \sqrt{x+3} & \text { (b) } f(x)=\frac{4}{1+x^{2}}
\end{array}
$$

5. (10 points) You are given $f^{\prime}(x)=-x^{2}+2 x-1$. Find the intervals on which (a) $f^{\prime}(x)$ is increasing or decreasing, (b) the graph of f is concave upward or concave downward, and (c) find the x-values of the relative extrema and inflection points of f.
6. (10 points) Find the absolute extrema of

$$
f(x)=\frac{4}{3} \sqrt{3-x}
$$

on the closed interval $[0,3]$.

