* Note: No points will be given if no arguments are provided for an answer. Good Luck! $\sim \sim$ Yuling $\ddot{\sim}$

1. (10 points) Find the domain and range of the function

$$
f(x)=\frac{x-2}{x+4}
$$

2. (10 points) Determine whether the function $f(x)=|x+3|$ is one-to-one. If it is, find its inverse function.
3. (10 points) Find the inverse function of f, where $f(x)=\sqrt{9-x^{2}}, \quad 0 \leq x \leq 3$.
4. (10 points) Describe the interval(s) on which the function is continuous. If there are any discontinuities, determine whether they are removable.

$$
f(x)= \begin{cases}x^{2}+1 & x<0 \\ x-1 & x \geq 0\end{cases}
$$

5. (10 points) Find the constant a such that the function $f(x)$ is continuous on the entire real number line, where

$$
f(x)= \begin{cases}x^{3} & x \leq 2 \\ a x^{2} & x>2\end{cases}
$$

6. (50 points) Find the indicated limit or show it does not exist. If the limiting value is infinite, indicate whether it is ∞ or $-\infty$.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x^{2}-4}$,
(b) $\lim _{\Delta t \rightarrow 0} \frac{(t+\Delta t)^{2}-5(t+\Delta t)-\left(t^{2}-5 t\right)}{\Delta t}$,
(c) $\lim _{x \rightarrow 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$,
(d) $\lim _{x \rightarrow-3^{-}} \frac{|x+3|}{x+3}$,
(e) $\lim _{x \rightarrow-2^{+}} \frac{3}{x^{2}-4}$
