* Answer and mark clearly the questions in the provided answer sheets. Write down your name and student's ID on the each answer sheet you used. * Note: No points will be given if no arguments are provided for an answer. Good Luck! $\quad \sim \sim$ Yuling $\quad \ddot{ }$

1. (10 points) Find the domain and range of the function

$$
f(x)=\frac{x-2}{x+4}
$$

2. (10 points) Determine whether the function $f(x)=|x+3|$ is one-to-one. If it is, find its inverse function.
3. (10 points) Find the inverse function of f, where $f(x)=\sqrt{9-x^{2}}, \quad 0 \leq x \leq 3$.
4. (50 points) Find the indicated limit or show it does not exist. If the limiting value is infinite, indicate whether it is ∞ or $-\infty$.

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}, \quad \text { (b) } \lim _{\Delta t \rightarrow 0} \frac{(t+\Delta t)^{2}-5(t+\Delta t)-\left(t^{2}-5 t\right)}{\Delta t} \\
& \text { (c) } \lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}, \\
& \text { (d) } \lim _{x \rightarrow 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}, \quad \text { (e) } \lim _{x \rightarrow-2^{-}} \frac{1}{x+2}
\end{aligned}
$$

5. (10 points) Discuss the continuity of the function

$$
f(x)=\frac{1}{x-2}
$$

on the closed interval [1,4]. If there are any discontinuities, determine whether they are removable.
6. (10 points) Find the constant a uch that the function $f(x)$ is continuous on the entire real number line, where

$$
f(x)= \begin{cases}x^{3} & x \leq 2 \\ a x^{2} & x>2\end{cases}
$$

