\star Answer and mark clearly the questions in the provided answer sheets.
Write down your name and student's ID on the each answer sheet you used.

* Note: No points will be given if no arguments are provided for an answer. For your information:
- $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$
- $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
- $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$ and $\frac{d}{d x} x^{r}=r x^{r-1}$, for all r
- $\frac{d}{d x} \sin x=\cos x$ and $\frac{d}{d x} \cos x=-\sin x$

Good Luck! $\sim \sim$ Yuling $\quad \because$

1. (10 points) Let $f(x)=\left(x^{2}+1\right)(2-x)$. Find the point(s), if any, on the graph of the function f where the tangent line is horizontal.
2. (20 points) Find an equation of the tangent line to the given graph at the given point.
(1) $f(x)=x \sqrt{2 x^{2}+7}$; at $(3,15)$
(2) $x^{2} y^{3}-y^{2}+x y-1=0 \quad$; at $(1,1)$
3. (30 points) (1) Find $F^{\prime}(2)$, where $F(x)=g(f(x))$ and $f(2)=3, f^{\prime}(2)=-3, g(3)=5$, and $g^{\prime}(3)=4$
(2) Find $\frac{d y}{d x}$, where $y=\tan \left(2 x^{2}\right)$
(3) Find $\frac{d^{2} y}{d x^{2}}$, where $y^{2}-x y=8$
4. (10 points) Use a differential to approximate

$$
\sqrt{4.02}+\frac{1}{\sqrt{4.02}}
$$

5. (10 points) Let $f(x)=2 x^{3}-3 x^{2}-16 x+3$, find the points on the graph of f at which the slope of the tangent line is equal to -4 .
6. (10 points) (a) find the intervals where the function f is increasing and where it is decreasing, (b) find the relative extrema of f, (c) find the intervals where the graph of f is concave upward and where it is concave downward, and (d) find the inflection points, if any, of f, with

$$
f(x)=\frac{x^{2}}{x-1}
$$

7. (10 points) Find the absolute maximum value and the absolute minimum value, if any, of the function $f(s)=s \sqrt{1-s^{2}}$ on the closed interval $[-1,1]$.
