* Answer and mark clearly the questions in the provided answer sheets. Write down your name and student's ID on the each answer sheet you used. * **Note:** No points will be given if no arguments are provided for an answer. For your information: • $\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + g'(x)f(x)$

•
$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

• $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$ and $\frac{d}{dx}x^r = rx^{r-1}$, for all r

•
$$\frac{d}{dx}\sin x = \cos x$$
 and $\frac{d}{dx}\cos x = -\sin x$

- Good Luck! $\sim \sim$ Yuling
- 1. (10 points) Let $f(x) = (x^2 + 1)(2 x)$. Find the point(s), if any, on the graph of the function f where the tangent line is horizontal.
- 2. (20 points) Find an equation of the tangent line to the given graph at the given point. (1) $f(x) = x\sqrt{2x^2+7}$; at (3,15) (2) $x^2y^3 - y^2 + xy - 1 = 0$; at (1,1)
- 3. (30 points) (1) Find F'(2), where F(x) = g(f(x)) and f(2) = 3, f'(2) = -3, g(3) = 5, and g'(3) = 4(2) Find $\frac{dy}{dx}$, where $y = \tan(2x^2)$ (3) Find $\frac{d^2y}{dx^2}$, where $y^2 - xy = 8$
- 4. (10 points) Use a differential to approximate

$$\sqrt{4.02} + \frac{1}{\sqrt{4.02}}.$$

- 5. (10 points) Let $f(x) = 2x^3 3x^2 16x + 3$, find the points on the graph of f at which the slope of the tangent line is equal to -4.
- 6. (10 points) (a) find the intervals where the function f is increasing and where it is decreasing, (b) find the relative extrema of f, (c) find the intervals where the graph of f is concave upward and where it is concave downward, and (d) find the inflection points, if any, of f, with

$$f(x) = \frac{x^2}{x - 1}$$

7. (10 points) Find the absolute maximum value and the absolute minimum value, if any, of the function $f(s) = s\sqrt{1-s^2}$ on the closed interval [-1, 1].