* Answer and mark clearly the questions in the provided answer sheets.

Write down your name and student's ID on the each answer sheet you used.

* Note: No points will be given if no arguments are provided for an answer. Good Luck!
$\sim \sim$ Yuling $\ddot{ }$

1. (10 points) Find the domain and range of the function $f(x)=\sqrt{1-x}$.
2. (50 points) Find the indicated limit, if it exists. If the limiting value is infinite, indicate whether it is ∞ or $-\infty$.
(a) $\lim _{x \rightarrow 0} \frac{x^{2}-x}{2 x}$
(b) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$
(c) $\lim _{x \rightarrow 1} \frac{2 x-2}{x^{3}+x^{2}-2 x}$
(d) $\lim _{x \rightarrow \infty} \frac{x^{5}-x^{3}+x-1}{x^{6}+2 x^{2}+1}$
(e) $\lim _{x \rightarrow 0^{+}} \frac{1}{x}$
3. (10 points) Determine all values of x at which the function f is discontinuous, where

$$
f(x)=\frac{x^{2}-2 x}{x^{2}-3 x+2}
$$

4. (10 points) Let

$$
f(x)= \begin{cases}x+2 & \text { if } x \leq 1 \\ k x^{2} & \text { if } x>1\end{cases}
$$

Find the constants k that will make f continuous on $(-\infty, \infty)$.
5. (10 points) Show that the function $f(x)=x^{3}-2 x^{2}+3 x+2$ is continuous on the interval $[-1,1]$, hence f must have at least one zero in the interval $(-1,1)$.
6. (10 points) Let $f(x)=2 x^{2}+1$. Find the derivative f^{\prime} of f, then find an equation of the tangent line to the curve at the point $(1,3)$.

