- 1. (10 points) Find the domain and range of the function $f(x) = \sqrt{1-x}$.
- 2. (50 points) Find the indicated limit, if it exists. If the limiting value is infinite, indicate whether it is ∞ or $-\infty$.

(a)
$$\lim_{x \to 0} \frac{x^2 - x}{2x}$$
 (b) $\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$ (c) $\lim_{x \to 1} \frac{2x - 2}{x^3 + x^2 - 2x}$
(d) $\lim_{x \to \infty} \frac{x^5 - x^3 + x - 1}{x^6 + 2x^2 + 1}$ (e) $\lim_{x \to 0^+} \frac{1}{x}$

3. (10 points) Determine all values of x at which the function f is discontinuous, where

$$f(x) = \frac{x^2 - 2x}{x^2 - 3x + 2}.$$

4. (10 points) Let

$$f(x) = \begin{cases} x+2 & \text{if } x \le 1\\ kx^2 & \text{if } x > 1 \end{cases}$$

Find the constants k that will make f continuous on $(-\infty, \infty)$.

- 5. (10 points) Show that the function $f(x) = x^3 2x^2 + 3x + 2$ is continuous on the interval [-1, 1], hence f must have at least one zero in the interval (-1, 1).
- 6. (10 points) Let $f(x) = 2x^2 + 1$. Find the derivative f' of f, then find an equation of the tangent line to the curve at the point (1, 3).