Answer and mark clearly the questions in the provided answer sheets. Write down your name and student's ID on the each answer sheet you used. * Note: No points will be given if no arguments are provided for an answer. Good Luck!
$\sim \sim$ Yuling $\ddot{ }$

1. (10 points) Find the domain and range of the function

$$
f(x)=\frac{x+3}{x-1}
$$

2. (10 points) Determine whether the function $f(x)=x^{2}-x-2$ is one-to-one.
3. (10 points) Find the inverse function of f, where $f(x)=\sqrt{x^{2}-9}, \quad x \geq 3$.
4. (50 points) Find the indicated limit or show it does not exist. If the limiting value is infinite, indicate whether it is ∞ or $-\infty$.
(a) $\lim _{x \rightarrow-2^{-}} \frac{x+2}{|x+2|}$,
(b) $\lim _{x \rightarrow 0^{+}}\left(x-\frac{1}{x}\right)$,
(c) $\lim _{x \rightarrow 0} \frac{[1 /(x-2)]-1}{x}$,
(d) $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4 x+4}$,
(e) $\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}-(x+\Delta x)-\left(x^{3}-x\right)}{\Delta x}$
5. (10 points) Describe the interval(s) on which the function h is continuous, where

$$
h(x)=f(g(x)), \quad f(x)=\frac{1}{\sqrt{x}}, \quad g(x)=x-1, x>1 .
$$

Explain why h is continuous on the interval(s). If h has a discontinuity, identify the conditions of continuity that are not satisfied.
6. (10 points) Find the constants a and b such that the function $f(x)$ is continuous on the entire real number line, where

$$
f(x)= \begin{cases}2 & x \leq-1 \\ a x+b & -1<x<3 \\ -2 & x \geq 3\end{cases}
$$

