A New Approach for Deriving Better Con dence Interval Supplemented with Point Estimators for Parameters of Some Most Used Discrete Exponential Family Distributions

Chia-Ying Wu Adviser: Dr. Yu-Ling Tseng

Department of Applied Mathematics National Dong Hwa University

June 28, 2011

Outline

Motivation

- Binomial case
- Other two discrete exponential family distribution: Poisson and negative binomial

Let $X_1, X_2, \ldots, X_n, \ldots$ be iid with $E(X_i) = \text{am} d \text{ var}(X_i) = s^2 < \frac{1}{2}$. Then $p = \overline{n}(\overline{X} - m) \cdot p = N(0, s^2)$, i.e $\frac{p \cdot \overline{n}(\overline{X} - m)}{1 \cdot p} \cdot N(0, 1)$.

Suppose X Binomial(n, p) n : xed, 0

4 D > 4 D > 4 E > 4 E > E 990

b) Con dence interval for p

Wald interval: One of the most used C.I.'s for p.

CI 362.83 57.9701 Tf 1f -.7828 Td [(W 362.53m 11-3631 Tf

Figure 1: Coverage probabilities of Clw.

Other C.I.s forp

Similar techniques used

Wilson Score interval: It can be derived from

$$\frac{\hat{p} + \hat{p} + p}{p(1 + p)/n} = z_{a22eyJ/F62 \text{ sol1(et)}}^2 + z_{a22eyJ/F62 \text{ sol1(et)}}^2 + z_{a34eyJ/F62 \text{ sol1(et)}}$$

A nite sample con dence interval for p.

Clopper-Pearson interval : Solving ${\bf p}$ in the equations.

å ¦

A New Approach for Deriving Better Con dence Interval Supplemented with Point Estimators for Parameters of Some Mos L Motivation

Figure 2: Comparison of the coverage probabilities for n=25.

Wilson Score interval

- use CLT & solve quadratic equation.
- Behaves satisfactorily except when p nears 0 or 1.

Clopper-Pearson interval

- Finite sample.
- Consistently conservative.

A New Approach for Deriving Better Con dence Interval Supplemented with Point Estimators for Parameters of Some Most Used Di L-Motivation

Wilson Score interval

- use CLT & solve quadratic equation.
- Behaves satisfactorily except when p nears 0 or 1.

Clopper-Pearson interval

- Finite sample.
- Consistently conservative.
- ! Both of them do not o er supplemental point estimators!

Q:

Improve coverage probability?

New estimators for p, satisfactory?

d-M

Supposehthat T_n ish sequence of estimators of \boldsymbol{q} , and

$$^{p}\,\bar{n}(T_{n}$$

Figure 4: Comparison of the coverage probabilities for n = 25.

 Cl_o improves Cl_W , especially when p nears 0 or 1.

$$\mathbb{B}$$
 $Cl_0 = [0, 1]$, when $\hat{p} = 0$ or 1.) meaningless and useless.

Restriction ofClo

Clo improvesClw, especially where nears 0 or 1.

BUT, $Cl_0 = [0, 1]$, when $\hat{p} = 0$ or 1.) meaningless and useless.

- , modi ed Clo
 - Cl_{ZL}) conservative!

Zhou, Li and Yang (2008)

- replacing by $p = \frac{X+d}{n+2d}$, for $\frac{3}{32}$ d $\frac{3}{16}$.
 - ! Our proposed con dence intervals for:

$$Cl_{TW} = \frac{e^L}{1 + e^L}, \frac{e^U}{1 + e^U}, [L_{TW}, U_{TW}]$$

where
$$L = logit(p)$$
 $P = \frac{Z_{a/2}}{np(1 p)}$ and $U = logit(p) + P = \frac{Z_{a/2}}{np(1 p)}$.

Q : Comparing to others?

C.I.'s for p

b) log(p):

Brown et. al (2001)

Pires and Amado (2008) z_{a/2}

The Agresti-Coull interval. Replaces

Agresti and Coull (1998)

Let
$$\tilde{p} = \frac{\tilde{X}}{\tilde{n}}$$
, where $\tilde{X} = X + \frac{z_{a/2}^2}{1}$

A New Approach for Deriving Better Con dence Interval Supplemented with Point Estimators for Parameters of Some Mos Libronial case

Recommendable alternative intervals are :

Cl_{TW}, Cl_{CP}, Cl_{arcsin}, cc, Cl_{AC}, Cl_{WS}.

Other propositions:

Average Width?

All of them o er supplemental point estimators!

- Jake midpoint of each interval be it's supplemental point estimator.
- ! The midpoint of our proposed CI_{TW} : \hat{p}_{TW}

Compare them to \bar{X} by MSE and IMSE.

Figure 7: Comparison of the average width of intervals, variance, bias and MSE of point estimators for p when n=25, a=0.05.

Figureh8: Comparehtodi erent sample sizes at a = 0.05.

A New Approach for Deriving Better Con dence interval supplemented with Point Estimators for Parameters of Some Mos Libinomial case

Figure 10: Compare to di erent con dence coe cients for n = 25.

Table 1: Comparison of IMSE of supplemented point estimators between Cl_W, \rm Cl_{TW} , \rm Cl_{CP} , \rm Cl_{arcsin} $_{cc}$, \rm Cl_{AC} and \rm Cl_{WS} for various a and n.

			IMSE					
а	n	CI_W	CI _{TW 1}	CI _{TW 2}	CI_{CP}	CI_{WS}	CI_{AC}	Cl _{arcsin} cc
0.01	10	.0166	.0437	.0495	.0201	.0190	.0189	.0199
	25	.0066	.0173	.0229	.0074	.0077	.0077	.0071
	50	.0033	.0067	.0110	.0035	.0037	.0037	.0034
0.05	10	.0166	.0263	.0367	.0156	.0149	.0149	.0156
	25	.0066	.0089	.0140	.0064	.0064	.0064	.0064
	50	.0033	.0038	.0057	.0032	.0033	.0033	.0032
0.25	10	.0166	.0139	.0145	.0138	.0140	.0140	.0138
	25	.0066	.0061	.0062	.0061	.0062	.0062	.0061
	50	.0033	.0032	.0032	.0032	.0032	.0032	.0032

A New Approach for Deriving Better Con dence Interval Supplemented with Point Estimators for Parameters of Some Mos

L-Binomial case

TW

4 D > 4 B > 4 B > 4 B > 9 Q @

by straightforward but tedious derivations, we solve the inequality

n
$$\frac{z}{B}^2$$
, h(p),

where

$$B = p \frac{1}{p(1 - p)\log} \frac{1 + 2E}{1 - p(1 - p)\log} \frac{1 - 2E}{1 - p(1 - p)$$

$$\max h(p) = h(\frac{1}{2})$$

Take
$$n_{TW} = dh(\frac{1}{2})e$$

Figure 11: The functiorh(p) when E 10% with variousa.

6

The coverage probabilities of Clware too low.

The sinverage probabilities of CICP, CI

Figure 12: Flow chart of interval estimation for binomial case.

34 / 5