1. Let X_{1}, \ldots, X_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$.
(a) If σ^{2} is known, find a minimum sample size n to quarantee that the 95% twosided UMAU confidence interval for μ will have length no more than $\sigma / 4$.
(b) If σ^{2} is unknown, how to find a minimum sample size n to quarantee, with probability 0.9 , that the 95% two-sided UMAU confidence interval for μ will have length no more than $\sigma / 4$?
2. Let a random variable $X \sim f(x ; \theta)$, where f is a p.d.f. defined as

$$
f(x ; \theta)=\frac{e^{(x-\theta)}}{\left(1+e^{(x-\theta)}\right)^{2}}, \quad x \in R, \theta \in R .
$$

Based on one observation, X, find the UMA one-sided $1-\alpha$ confidence interval of the form $\{\theta: \theta \leq U(X)\}$.
3. Let X be a single observation from $\operatorname{Beta}(\theta, 1), \theta>0$.
(a) Let $Y=-(\ln X)^{-1}$. Evaluate the confidence coefficient of the interval $[Y / 2, Y]$, that is: calculate $\inf _{\theta>0} P_{\theta}(\theta \in[Y / 2, Y])$.
(b) Find a pivot-based confidence interval having the same confidence coefficient as the interval in part (a).

