1. Let X_{1}, \ldots, X_{n} be a random sample from a $U(0, \theta)$, with unknown parameter $\theta>0$, and let $Y=X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$.
(a) Let $0 \leq c<d$ be given constant, and consider the random interval $C_{1}(Y)=$ $[Y+c, Y+d]$. Calculate the coverage probability function of $C_{1}(Y)$, then show that the confidence coefficient of $C_{1}(Y)$ is 0 .
(b) Let $1 \leq a<b$ be given constant, and consider the random interval $C_{2}(Y)=$ $[a Y, b Y]$. Show that the coverage probability function of $C_{2}(Y)$ is a constant, hence equals to the confidence coefficient of $C_{2}(Y)$.
(c) Now, for a given $\alpha \in(0,1)$, give three different pairs of a and b in (b) such that the confidence coefficient of $C_{2}(Y)$ is $1-\alpha$.
2. Assume that α_{1} and α_{2} are any numbers such that $0 \leq \alpha_{1} \leq \alpha_{2} \leq 1$. Let U_{α} be an exact upper confidence bound for θ, i.e. $P_{\theta}\left(\theta \leq U_{\alpha}(X)\right)=\alpha, \forall \theta$. If $U_{\alpha_{1}}(x) \leq U_{\alpha_{2}}(x)$, $\forall x$, prove that for all $\theta, P_{\theta}\left\{\theta \in\left[U_{\alpha_{1}}, U_{\alpha_{2}}\right]\right\} \geq \alpha_{2}-\alpha_{1}$.
3. Let X_{1}, \ldots, X_{n} be i.i.d. from $N\left(\mu, \sigma_{0}^{2}\right)$, with $\sigma_{0}>0$ and $\alpha \in(0,1)$ are given constants.
(a) Consider the random lower confidence limit for θ :

$$
C_{1}(X)=\left[\bar{X}-\frac{\sigma_{0}}{\sqrt{n}} Z_{\alpha}, \infty\right) .
$$

Calculate the coverage probabilities and the (relevant) false coverage probabilities of $C_{1}(X)$. Is $C_{1}(X)$ an unbiased confidence set for θ ?
(b) Also, consider the random upper confidence limit for θ :

$$
C_{2}(X)=\left(-\infty, \bar{X}+\frac{\sigma_{0}}{\sqrt{n}} Z_{\alpha}\right] .
$$

Calculate the coverage probabilities and the (relevant) false coverage probabilities of $C_{2}(X)$. Is $C_{2}(X)$ an unbiased confidence set for θ ?
(c) Now, consider the random confidence interval for θ :

$$
C_{3}(X)=\left[\bar{X}-\frac{\sigma_{0}}{\sqrt{n}} Z_{\alpha / 2}, \bar{X}+\frac{\sigma_{0}}{\sqrt{n}} Z_{\alpha / 2}\right] .
$$

Calculate the coverage probabilities and the (relevant) false coverage probabilities of $C_{3}(X)$. Is $C_{3}(X)$ an unbiased confidence set for θ ?
4. Find a $1-\alpha$ confidence interval for θ, given X_{1}, \ldots, X_{n} i.i.d. with p.d.f.
(a) $f(x ; \theta)=1, \theta-0.5<x<\theta+0.5 ; 0$, otherwise.
(b) $f(x ; \theta)=2 x / \theta^{2},(\theta>0), 0<x<\theta ; 0$, otherwise.
5. Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(0, \sigma_{x}^{2}\right)$ and Y_{1}, \ldots, Y_{m} be a random sample from $N\left(0, \sigma_{y}^{2}\right)$, independent of the $X^{\prime} s$. Define $\lambda=\sigma_{y}^{2} / \sigma_{x}^{2}$. Find a $1-\alpha$ confidence interval for λ by inverting that LRT.
6. Let X_{1}, \ldots, X_{n} be i.i.d. random variables from $N\left(\theta, \sigma^{2}\right)$, where σ^{2} is also unknown. As usual, $\bar{X}=\sum X_{i} / n$ and $S^{2}=\sum\left(X_{i}-\bar{X}\right)^{2} /(n-1)$.
(a) Show that the interval $\left\{\theta: \theta \leq \bar{X}+S t_{n-1, \alpha} / \sqrt{n}\right\}=\left(-\infty, \bar{X}+S t_{n-1, \alpha} / \sqrt{n}\right]$ can be derived by inverting the acceptance region of an LRT.
(b) Show that the interval $\left[\bar{X} \pm S t_{n-1, \alpha / 2} / \sqrt{n}\right]$ can also be derived by inverting the acceptance region of an LRT.
(c) Show that the intervals in parts (a) and (b) are unbiased.

