Instructor: Yu-Ling Tseng

20240418

- 1. Suppose that X_1, \ldots, X_n are *i.i.d.* r.v.'s from $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown. Given μ_0 and $0 < \alpha < 1$. Derive the level α LRT (likelihood ratio test) for testing $H_0: \mu \leq \mu_0 \quad v.s. \quad H_1: \mu > \mu_0$.
- 2. Suppose that X_1, \ldots, X_n are *i.i.d.* r.v.'s from $N(\mu_x, 1)$, and Y_1, \ldots, Y_m *i.i.d.* r.v.'s from $N(\mu_y, 1)$. Also assume that the X's are independent of the Y's. Derive the level α (0 < α < 1) LRT for testing $H_0: \mu_x = \mu_y$ v.s. $H_1: \mu_x \neq \mu_y$.
- 3. Suppose that X_1, \ldots, X_n are *i.i.d.* r.v.'s from $N(\mu_1, \sigma_1^2)$, and Y_1, \ldots, Y_m *i.i.d.* r.v.'s from $N(\mu_2, \sigma_2^2)$. Also assume that the X's are independent of the Y's, and $\mu_1, \sigma_1^2, \mu_2, \sigma_2^2$ are all unknown.

Derive the level α (0 < α < 1) LRT for testing H_0 : $\sigma_1^2 = \sigma_2^2$ v.s. H_1 : $\sigma_1^2 \neq \sigma_2^2$.

- 4. Let $f(x;\theta) = \theta e^{-\theta x}$, for x > 0, and $f(x;\theta) = 0$, otherwise. Suppose that X_1, \ldots, X_n are i.i.d. r.v.'s from the common probability density function $f(x;\theta_1)$, and Y_1, \ldots, Y_m i.i.d. r.v.'s from $f(x;\theta_2)$. Also assume that the X's are independent of the Y's. For testing $H_0: \theta_1 = \theta_2$ v.s. $H_1: \theta_1 \neq \theta_2$, given $0 < \alpha < 1$,
 - (a) show that the LRT can be based on the statistic

$$T = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i + \sum_{j=1}^{m} Y_j} ,$$

- (b) find the distribution of T when H_0 is true, then
- (c) show how the level α LRT can become an F test.
- 5. (FYI) A random sample X_1, \ldots, X_n is drawn from a Pareto population with p.d.f.

$$f(x; \theta, \mu) = \frac{\theta \mu^{\theta}}{x^{\theta+1}} I_{[\mu, \infty)}(x),$$

where both $\theta > 0$ and $\mu > 0$ are unknown parameters. Show that a LRT for testing $H_0: \theta = 1$ v.s. $H_1: \theta \neq 1$ rejects H_0 if $T(\mathbf{x}) \leq c_1$ or $T(\mathbf{x}) \geq c_2$, where $0 < c_1 < c_2$,

$$T(\mathbf{X}) = \log \left[\frac{\prod_{i=1}^{n} X_i}{X_{(1)}^n} \right],$$

and $X_{(1)} = \min\{X_1, X_2, \dots, X_n\}.$

6. (FYI) Suppose that X_1, \ldots, X_n are *i.i.d.* r.v.'s with a $Beta(\mu, 1)$ p.d.f. and Y_1, \ldots, Y_m i.i.d. r.v.'s with a $Beta(\lambda, 1)$ p.d.f.. Also assume that the X's are independent of the Y's.

For testing $H_0: \mu = \lambda$ v.s. $H_1: \mu \neq \lambda$, given $0 < \alpha < 1$,

(a) show that the LRT (likelihood ratio test) can be based on the statistic

$$T = \frac{\sum_{i=1}^{n} \log X_i}{\sum_{i=1}^{n} \log X_i + \sum_{i=1}^{m} \log Y_i} ,$$

(b) find the distribution of T when H_0 is true, then show how to get a level $\alpha = 0.1$ LRT.