Math-Stat. (2) HW Instructor: Yu-Ling Tseng (Due on 20240411, in class.)

- 1. Let $X \sim f(x) = e^{-x}$, x > 0. Based on one observation of $Y = \theta X$, derive the MP level $\alpha = 0.1$ test for testing $H_0: \theta = 1$ v.s. $H_1: \theta = 2$. Compute its probability of Type-II error.
- 2. (Important example where MP test is not unique) Let X_1, \ldots, X_n be *i.i.d.* $U(0, \theta)$ r.v.'s and $X_{(n)} = \max\{X_1, \ldots, X_n\}$. Also let θ_0, θ_1 with $0 < \theta_0 < \theta_1$ and $0 < \alpha < 1$ be given constants. For testing $H_0: \theta = \theta_0$ v.s. $H_1: \theta = \theta_1$,
 - (a) show that the randomized test

$$\phi_1(x_1, \dots, x_n) = \phi_1(x_{(n)}) = \begin{cases} 1 & \text{if } x_{(n)} > \theta_0, \\ \alpha & \text{otherwise} \end{cases}$$

is a MP level α test, calculate its power.

(b) Define a non-randomized test ϕ_2 as

$$\phi_2(x_1, \dots, x_n) = \phi_2(x_{(n)}) = \begin{cases} 1 & \text{if } x_{(n)} \ge k, \\ 0 & \text{otherwise,} \end{cases}$$

where k is determined such that $E_{\theta_0}\phi_2(x_{(n)}) = \alpha$.

Determine the value of k, and show that ϕ_2 is also a MP level α test for testing $H_0: \theta = \theta_0$ v.s. $H_1: \theta = \theta_1$, by indicating it power is the same as the power $\phi_1(x_{(n)})$.

(c) Define another non-randomized test ϕ_3 as

$$\phi_3(x_1,\ldots,x_n) = \phi_3(x_{(n)}) = \begin{cases} 1 & \text{if } x_{(n)} > \theta_0 \text{ or } x_{(n)} \le k, \\ 0 & \text{otherwise,} \end{cases}$$

where k is determined such that $E_{\theta_0}\phi_3(x_{(n)}) = \alpha$.

Determine the value of k, and show that ϕ_3 is also a MP level α test for testing $H_0: \theta = \theta_0$ v.s. $H_1: \theta = \theta_1$.

3. Let $\alpha \in (0, 1), 0 < \theta_0 < \theta_1$ be given and X_1, \ldots, X_n be a random sample from $f(x; \theta)$ where

$$f(x;\theta) = \theta/x^2, \ \theta \le x < \infty.$$

Derive the MP (most powerful) level α test for testing H_0 : $\theta = \theta_0 v.s. H_1$: $\theta = \theta_1$. Calculate its power.