1. problem 13.1.1 of the textbook.
2. Let X be a discrete random variable whose p.m.f. is for $k=1,2, \ldots, 7, P_{p}(X=k)=$ p_{k} where $p=\left(p_{1}, p_{2}, \ldots, p_{7}\right)$ with $p_{k} \geq 0, \forall k$ and $\sum p_{k}=1$. Based on observing one X, give THREE different level $\alpha=0.05$ tests for testing
$H_{0}: p=(0.01,0.01,0.02,0.01,0.01,0.01,0.93)$ v.s.
$H_{1}: p=(0.06,0.05,0.04,0.03,0.02,0.01,0.79)$.
Compute the probability of Type-II error for your tests.
Do the same with level 0.035.
3. Let $X \sim \operatorname{Gamma}(1, \beta)$. To test $H_{0}: \beta=1$ v.s. $H_{1}: \beta>1$, suppose student A uses the non-randomized test

$$
\varphi_{A}(x)= \begin{cases}1 & \text { if } x>c \\ 0 & \text { if } x \leq c\end{cases}
$$

and B uses

$$
\varphi_{B}(x)= \begin{cases}1 & \text { if } x<k \\ 0 & \text { if } x \geq k\end{cases}
$$

Find the constants c and k so that both tests have the same size 0.05 and then derive and compare their power functions. Which test is better? Why?
4. Let X_{1}, \ldots, X_{n} be i.i.d. $U(0, \theta)$ r.v.'s and $X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Also let θ_{0}, θ_{1} with $0<\theta_{0}<\theta_{1}$ and $0<\alpha<1$ be given constants. For testing $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta=\theta_{1}$, Consider the test defined by

$$
\varphi_{1}\left(x_{1}, \ldots, x_{n}\right)=\varphi_{1}\left(x_{(n)}\right)= \begin{cases}1 & \text { if } \theta_{0}<x_{(n)} \\ \alpha & \text { otherwise }\end{cases}
$$

Show that it is a level α test and calculate its power.
Now, define another test φ_{2} as

$$
\varphi_{2}\left(x_{1}, \ldots, x_{n}\right)=\varphi_{2}\left(x_{(n)}\right)= \begin{cases}1 & \text { if } k \leq x_{(n)} \\ 0 & \text { otherwise }\end{cases}
$$

where k is determined such that $E_{\theta_{0}}\left[\varphi_{2}\left(X_{(n)}\right)\right]=\alpha$.
Determine the value of k, and show that φ_{2} has the same power as φ_{1}
5. A sample of size 1 is taken from the p.d.f.

$$
f(x ; \theta)= \begin{cases}\frac{2}{\theta^{2}}(\theta-x) & \text { if } 0<x<\theta \\ 0 & \text { otherwise }\end{cases}
$$

Let θ_{0}, θ_{1} with $\theta_{0}>\theta_{1}$ be two given constants.
(a) Find the most powerful (MP) level $\alpha=0.05$ test for testing $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta=\theta_{1}$. Calculate its power.
(b) Write out the test in part (a) for the case where $\theta_{0}=2$ and $\theta_{1}=1$.
6. Let X be random variable with p.d.f. f whoch can be either f_{0} or else f_{1}, where f_{0} is the p.d.f. of $N(0,1)$ and f_{1} is the p.d.f. of Cauchy $(0,1)$ (i.e. $f_{1}(x)=1 /\left(\pi\left(1+x^{2}\right)\right)$, $x \in R$). Find the MP level α test for testing $H_{0}: f=f_{0}$ v.s. $H_{1}: f=f_{1}$. Calculate its power.

