Math-Stat. (2) HW Instructor: Yu-Ling Tseng (Due on 20160505, in class.)

- 1. Suppose that X_1, \ldots, X_n are *i.i.d.* r.v.'s from $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown. Given μ_0 and $0 < \alpha < 1$. Derive the level α LRT (likelihood ratio test) for testing $H_0 : \mu \leq \mu_0 \quad v.s. \quad H_1 : \mu > \mu_0$.
- 2. Let $f(x;\theta) = \theta e^{-\theta x}$, for x > 0, and $f(x;\theta) = 0$, otherwise. Suppose that X_1, \ldots, X_n are *i.i.d.* r.v.'s from the common probability density function $f(x;\theta_1)$, and Y_1, \ldots, Y_m *i.i.d.* r.v.'s from $f(x;\theta_2)$. Also assume that the X's are independent of the Y's. For testing $H_0: \theta_1 = \theta_2$ v.s. $H_1: \theta_1 \neq \theta_2$, given $0 < \alpha < 1$,
 - (a) show that the LRT can be based on the statistic

$$T = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i + \sum_{j=1}^{m} Y_j} ,$$

- (b) find the distribution of T when H_0 is true, then
- (c) show how the level α LRT can become an F test.

And 13.7: 1 (i, ii, iii), 3 from textbook.