1. A sample of size 1 is taken from the p.d.f.

$$f(x;\theta) = \begin{cases} \frac{2}{\theta^2}(\theta - x) & \text{if } 0 < x < \theta, \\ 0 & \text{otherwise.} \end{cases}$$

Let θ_0 , θ_1 with $\theta_0 > \theta_1$ be two given constants.

- (a) Find the most powerful (MP) level $\alpha = 0.05$ test for testing $H_0: \theta = \theta_0$ v.s. $H_1: \theta = \theta_1$. Calculate its power.
- (b) Write out the test in part (a) for the case where $\theta_0 = 2$ and $\theta_1 = 1$.
- 2. Let X be random variable with p.d.f. f whoch can be either f_0 or else f_1 , where f_0 is the p.d.f. of N(0,1) and f_1 is the p.d.f. of Cauchy(0, 1) (i.e. $f_1(x) = 1/(\pi(1+x^2))$, $x \in R$). Find the MP level α test for testing $H_0: f = f_0$ v.s. $H_1: f = f_1$. Calculate its power.
- 3. Let X_1, \ldots, X_n be *i.i.d.* $U(0, \theta)$ r.v.'s and $X_{(n)} = \max\{X_1, \ldots, X_n\}$. Also let θ_0, θ_1 with $0 < \theta_0 < \theta_1$ and $0 < \alpha < 1$ be given constants. For testing $H_0 : \theta = \theta_0$ v.s. $H_1 : \theta = \theta_1$,
 - (a) show that the test

$$\phi_1(x_1, \dots, x_n) = \phi(x_{(n)}) = \begin{cases} 1 & \text{if } \theta_0 < x_{(n)}, \\ \alpha & \text{otherwise} \end{cases}$$

is a MP level α test.

(b) Define a test ϕ_2 as

$$\phi_2(x_1, \dots, x_n) = \phi_2(x_{(n)}) = \begin{cases} 1 & \text{if } k \le x_{(n)}, \\ 0 & \text{otherwise,} \end{cases}$$

where k is determined such that $E_{\theta_0}\phi_2(x_{(n)}) = \alpha$.

Determine the value of k, and show that ϕ_2 is also a MP level α test for testing $H_0: \theta = \theta_0$ v.s. $H_1: \theta = \theta_1$.

4. Let X_1, \ldots, X_n be *i.i.d.* Gamma $(1, \beta)$. Find the MP level $\alpha = 0.05$ test for testing $H_0: \beta = 2$ v.s. $H_1: \beta = 4$. (Note that it is a Chi-squared test.)