Notes

- Midterm will beheld in class 0900-1100, 020425 (Thr). Y ou can bring along a calculator and a cheatsheat of size A4 with you. I will explain this part in class. Be Prepared!.
- This midterm will cover (refer to Content of theText): Ch 1 (except $\S 1.5$), §2.1, §2.2. §3.2 (skip Example 3-8, Example 12), §3.3 (skip Vector Space of Functions, p151-154).

1. Let A be a mxn matrix. Null space $N(A)$ and Span (space). S pan(v_{1}, \ldots, y_{n}) where $\mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}}$ are vectors in $\mathrm{V}=\mathrm{R}^{\mathrm{m}}$.
2. Spanning set of V .
3. Coordinate system of R^{n}. (Sets of vectors are) Linear independent and linearly dependent. Their connection with consistency of a linear system (Theorem)

Homework

1. Do the Chapter test in the end of each chapter. They are very helpful.
2. §3.3: 2, 5, (contrasted with $\S 3.2: 12$), 14, 16. Due 020425 in class before midterm.

Reminder

Determinant

You can calculate the determinant of a square matrix A by these rules

- If A is an elementary matrix of interchanging two roles (Type I, cf. p 68 rn Text) then $\operatorname{det}(A)=-1$
- If A is an upper triangular matrix with diagonal entries a_{1}, \cdots, a_{n} then $\operatorname{det}(A)=$ $a_{1} \cdots a_{n}$ (product of them).
- $\operatorname{det}(A)=\operatorname{det}\left(A^{t}\right), \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Consequently (you should be able to check them yourseff),

- If A is an elementary matrix of Type II (multiplying a nonzero constant c, p 69), then $\operatorname{det}(A)=c$.
- If A is an elementary matrix of Type III (adding a multiple of one row to another, p 69), then $\operatorname{det}(A)=1$.

Nonsingularity of A and consistency of $A X=b$
Theorem 1.3.1 (p 42). Theorem 1.4.3 (p 71), Corollary 1.4.4 (p 72), Theorem 2.2.2 (p 110). Connection with linearly independency of column vectors of A. Theorem 3.3.1, Theorem 3.3.2.

