Outline

We will skip partition matrix (Section 1.5) for the moment. Chapter 2 covers the topic of determinant. You don't need to remember the formula on P 102-104. As the author rightly pointed out, it is much easier to calculate determinant using row operations for $n>3$. We will use different approach here

1. Wewill define the determinant on (upper) triangular matrix (Theorem 2.1.3), elementary matrices (Summary on P 110) and take Theorem 2.1.2, $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$ as fact.
2. Main results: Theorem 2.2.2, 2.2.3.
3. Chapter 3. Vector Space. Now we are cooking!
4. Recall $A X=b$ is consistent if and only if b can be written as linear combination of column vectors of A. Solutions exist? Unique?
5. Let A be a mxn matrix. Null space and span (space).
6. Common structure: Subspace

Homework (due 020411)

1. §1.4: 15. Chapter 1: Chapter test (P 97-98).
$2 \S \S \quad 285$ Td 6P
nean ing and
ssiblcetQuizs on 1 .
