Here is sketches of proofs for Homework problems \#2, \#3 in §3.8.
EX 1 (§3.8 \# 2) Let X bea random variable with discrete uniform pmf on $\{ \pm 3, \pm 2, \pm 1,0\}$. Let g be pmf of the random variable $Y=r(X)=X^{2}-X$. Calculate the pmf g for Y. Solution. Note that for this question, it might be easier to follow the definition (1) then trying to figure out the inverse of r over various subdomains.

First we will make clear what the values that Y can take Specifically, let

$$
X=\{x \mid f(x)>0\}=\{ \pm 3, \pm 2, \pm 1,0\}
$$

We would like to get

$$
Y=\{y \mid g(y)>0\}=\{y \mid y=r(x), x \in X\}
$$

Note

$$
\begin{array}{|c||c|c|c|c|c|c|c|}
\mathrm{x} & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline \mathrm{y} & 12 & 6 & 2 & & & &
\end{array}
$$

where $1[A]$ is the indicator function of event A. Since

$$
\begin{aligned}
r(x)=x(2-x) \leq y & \Leftrightarrow x^{2}-2 x+y \geq 0 \\
& \Leftrightarrow\left(x \geq 1+\frac{p}{1-y}\right) \text { or }(x \leq 1-p \overline{1-y}) .
\end{aligned}
$$

Note for $y=r(x)=x(2-x)$, the derivative $y^{0}=-(x-1)$. Thus for $x \in[0,2]$ (including 0,2 makes no differences sincef is a pdf), $y=r(x)$ is increasing for $x<1$; decreasing for $x>1$. In addition, it reaches its maximum 1 when $x=1$ and attains its minimum 0 at $x=0,2$. Hence $G(y)=0$ if $y<0$; $=1$ if $y>1$; for $y \in[0,1]$,

$$
\begin{aligned}
& \text { (2) }=_{-}^{Z_{2}} 1\left[\left(x \geq 1+{ }^{p} \overline{1-y}\right) \text { or }(x \leq 1-p \overline{1-y})\right] \frac{x}{2} d x \\
& =Z_{1+{ }^{\vee} 1-}^{0}+{ }_{0}^{Z_{1-}{ }^{\vee} 1-} \quad \frac{x}{2} d x={\frac{x^{2}}{4}{ }_{1+}^{2}{ }_{1-}^{\vee}}^{Z^{2}}+_{0}^{x^{2}}{ }_{0}^{1^{\vee} 1-} \\
& =1-\frac{1}{4}\left[\left(1+{ }^{\mathrm{p}} \overline{1-y}\right)^{2}-\left(1-{ }^{\mathrm{p}} \overline{1-y}\right)^{2}\right]=1-\frac{\mathrm{p}}{1-y} \text {. }
\end{aligned}
$$

To summarize,

$$
G(y)=\begin{array}{ll}
0, & y<0 \\
1-\sqrt{ } 1-y, & y \in[0,1] \\
1, & y>1
\end{array}
$$

Thus the pdf

$$
g(y)=\frac{d}{d y} G(y)=\begin{array}{ll}
\left(\frac{v}{2} \frac{1}{1-}\right. & y \in(0,1) \\
0, & \text { Otherwise }
\end{array}
$$

Remark 1 A way to check whether we do get the right pdf/ pmf is to cal culate the expectation of Y (if exists) in two ways and confirm the equivalence. Specifically, for the case when X has pdf f and $Y=r(X)$ has pdf g

$$
\begin{align*}
E(Y) & =Z^{Z} y g(y) d y \\
E(r(X)) & =r(x) f(x) d x . \tag{3}
\end{align*}
$$

§3.8: \#3 as an illustration.

$$
\begin{aligned}
E(r(X)) & =E X(2-X)=Z_{2} 2 x-x^{2} d x=\frac{2}{3} \\
E(Y) & =Z_{1}^{0} y \frac{\sqrt{ } \frac{1}{2-y}}{2} d y, \quad \text { let } y=\sin ^{2} \theta, \theta \in(0, \pi / 2) \\
& =Z_{2}^{0} \frac{\sin ^{2} \theta}{2} \frac{\operatorname{lin}^{2}}{1-\sin ^{2} \theta} 2 \sin \theta \cos \theta d \theta \\
& =\sin ^{3} \theta d \theta={ }^{2}\left(\cos ^{2} \theta-1\right) d \cos \theta \\
& =\frac{z^{3}}{3}-z_{1}^{0}=\frac{2}{3} .
\end{aligned}
$$

This confirms that we did get the right pdf! The same idea works for moment generating functions as well. It might be easier to calculate in some cases.

Finally, I supplement a proof of a claim made in the Textbook. This proof is for the curious enjoyment only. :)
EX 3 (Example 4.4.1, P 204)
Z_{∞}

$$
\left.|x| e_{f}-3\right)^{2} d x<\infty \quad \forall k \in N .
$$

Proof. For any positive integer k, by L'Hôpital's Rule

$$
|x| e
$$

