Homework problem \#12 in $\S 1.12$ seems less straightforward. Here is a way to prove it.

To make clear what we seek to calculate, we need some definitions (they are similar to those used for proving Theorem 1.10.2).

$$
\begin{aligned}
\mathrm{B}_{1} & =\mathrm{A}_{1} \mathrm{~A}_{2}^{\mathrm{c}} \mathrm{~A}_{3}^{\mathrm{c}} \cdots \mathrm{~A}_{n}^{c} \\
\mathrm{~B}_{12} & =\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}^{\mathrm{c}} \cdots \mathrm{~A}_{n}^{\mathrm{c}} \\
\cdots & =\cdots \\
\mathrm{B}_{123 \cdots \mathrm{n}} & =\mathrm{A}_{1}^{\mathrm{c}} \mathrm{~A}_{2}^{\mathrm{c}} \cdots \mathrm{~A}_{n}^{\mathrm{c}} .
\end{aligned}
$$

Other B sets can be similarly defined. We also abuse the notations by adopting the convention: Let $s \subset S=\{1,2, \cdots, n\}$, we denote B_{s} as the event with all the elements in s as its subscript. For example, $s=\{1,2,3\}$ then $B_{s}=B_{123}$. Also $B_{\varnothing}=A_{1}^{c} A_{2}^{c} \cdots A_{n}^{c}$.

In the notations, \#12 asks us to show that
$P\left({ }_{i=1}^{[n} B_{i}\right)={ }^{X^{n}} P($

Proof. By Binomial Theorem,

$$
\begin{equation*}
\mathrm{X}_{\mathrm{m}=0}^{\mathrm{k}} C_{m}^{k}(-1)^{m}=0, \tag{3}
\end{equation*}
$$

(noting that $(1-1)^{k}={ }^{P} \underset{m=0}{k} C_{m}^{k}(-1)^{m} 1^{k-m}$) and

$$
\begin{equation*}
(1+x)^{k}={ }_{m=0}^{X^{k}} C_{m}^{k} x^{m} 1^{k-m} \tag{4}
\end{equation*}
$$

Differentiate both sides of (4) and then evaluate them at $x=-1$, we have

$$
\mathrm{X}_{\mathrm{m}=1}^{\mathrm{k}} \mathrm{mC}_{\mathrm{m}}^{\mathrm{k}}(-1)^{\mathrm{m}}=0
$$

Thus by (3) and(5), thdofthirf(a)1(n-T)-1(sides)-3-Equalesthefsthet

