APLM. Guide: C. Andy Tsao

Notes and Homework

One of the homework problems illustrates that calculating mean and variance of a random vector sometimes is easier than dealing with random variables individually using those long summation notations.

1. Under G-M. condition, define $e_i = Y_i - \hat{Y}_i$. Show that

$$Var(e_i) = {}^2 - Var(\hat{Y}_i), \quad i = 1, \cdots, n.$$

Actually, (5.75) in our text is exactly what we are after. However, we don't really need to assume $(X X)^{-1}$ exists nor assume the simple linear model. Some of your proofs are close but not quite right. Here I pretty much follow the proof given by Ms. Chang, J.-L. with a little modification.

Proof. By definition, $e = Y - \hat{Y} = (I - P)Y$ where *P* is a projection matrix onto V_r , the column space of *X*, such that $\hat{Y} = PY$. Note that since *P* is a projection matrix, so is I - P where *I* is the *nxn* identity matrix. And for any projection (idempotent) matrix, *Q*, $Q^2 = Q$ and Q = Q.

Therefore

$$e = (I-P)Y = (I-P) Y(I-P)$$

= $(I-P)^{2}(I-P) = ^{2}(I-P)$
= $^{2}I - P^{2}P = ^{2}I - _{PY}$
= $^{2}I - _{\hat{Y}}$

Hence the diagonal entries of $_{e}$ equal to those of $^{2}I - _{\hat{Y}_{e}}$ i.e.

$$Var(e_i) = {}^2 - Var(\hat{Y}_i), \quad i = 1, \cdots, n.$$

 $\sqrt{}$

For those who are rusty on matrix algebra or unfamiliar with random vector manipulation, please referred to $\S5.7-\S5.9$ of our textbook. For those are really interested in this topic or need them in your research, you can find more in Searle (1982). Practice them for a while, you will get to love them. :)

References Searle, S. R. (1982). Matrix Algebra Useful for Statistics. Wiley.

Typeset by AMSLaTeX