Note: The exam has 5 questions, for a total of 125 points. Explain your answer and write down necessary details of your calculation. No explanation/details = No credits. Good Luck!

1. True or False? In the following questions, determine whether the statement is true or false. Justify/Explain your answer. Give an example or explain briefly if the answer is "True", otherwise, give a counterexample.
(a) Let f and F be the pdf (probability density function) and cdf (cumulative distribution function) of a discrete random variable then $F^{\prime}(x)=f(x)$ for all $x \in(-\infty, \infty)$.
(b) If X, Y are two random variables and g, h are two continuous functions then $E(g(X) h(Y))=E(g(X)) E(h(Y))$ provided all expectations exist.
2. Let X and Y be r.v.'s whose joint pdf f is given by $f(x, y)=c x y 1_{(0,1) \times(0,1)}(x, y)$.
3. Let $\left(X_{1}, X_{2}\right) \sim N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$ where $\mu_{1}, \mu_{2} \in R, \sigma_{1}^{2}, \sigma_{2}^{2}>0$ and $|\rho|<1$. It is known that (you may use them as given)

$$
X_{2} \mid X_{1}=x_{1} \sim N\left(b\left(x_{1}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)
$$

with $b\left(x_{1}\right)=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x_{1}-\mu_{1}\right)$ and marginally $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$.
(a) Derive $\operatorname{Var}\left(E\left(X_{2} \mid X_{1}\right)\right)$.
(b) Calculate $E\left(X_{1}-X_{2}\right)^{2}$.
(c) Assume it is known that $\sigma_{1}=\sigma_{2}=1$. Find a number $1>c>0$ such that $P\left(\left|X_{1}-\mu_{1}\right|>2\right) \leq c$. Hint: Chebyshev's inequality.
(5) 5. Estimate the points you will get in the exam (excluding this problem).

