Note: The exam has 6 questions, for a total of 115 points. Explain your answer and write down necessary details of your calculation. No explanation/details $=$ No credits. Good Luck!

1. True or False? In the following questions, determine whether the statement is true or false. Justify/Explain your answer. Give an example or explain briefly if the answer is "True", otherwise, give a counterexample.
(a) Let A, B be two events and $P(A), P(B)>0$. If A, B are independent then $A \cap B \neq \emptyset$.
(b) If X is a continuous random variable with pdf (probability density function) f then $P(X=x)>0$ for some x.
(c) Let X and Y are random variables and $E\left(X^{2}\right), E(X), E(Y)<\infty$ then $E\left(X^{2}-2 X-Y\right)=E\left(X^{2}\right)-2 E(X)-E(Y)$
2. Let $X \sim \operatorname{Poisson}(\lambda)$ with pdf

$$
f(x)= \begin{cases}e^{-\lambda \frac{\lambda^{x}}{x!}} & \text { if } x=0,1,2, \ldots ; \lambda>0 \tag{20}\\ 0 & \text { otherwise }\end{cases}
$$

Calculate $E\left(X^{2}\right)$ and $E\left(X^{3}\right)$.
3. Let $X, Y \sim N(0,1)$ and X, Y are independent. Let $T=X+Y, W=X-Y$.
(a) Calculate $P(\max (X, Y)>0)$
(b) Find the joint pdf of T, W.
(c) Calculate $P(T<0 \mid W<0)$.
4. Let $X \sim U(0,1)$ and define $Y=1 I_{B_{1}}(X)+2 I_{B_{2}}(X)$ where $I_{A}(x)$, the indicator function of event A, takes value 1 if $x \in A$; 0 , otherwise. Let $B_{1}=(0.1,0.2), B_{2}=(0.3,0.5)$.
(a) Determine the pdf of Y.
(b) Verify that the pdf of Y you derived above is indeed a pdf.
5. Let $\left(X_{1}, X_{2}\right) \sim N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$ where $\mu_{1}, \mu_{2} \in R, \sigma_{1}^{2}, \sigma_{2}^{2}>0$ and $|\rho|<1$. It is known that (you may use them as given)

$$
X_{2} \mid X_{1}=x_{1} \sim N\left(b\left(x_{1}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)
$$

with $b\left(x_{1}\right)=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x_{1}-\mu_{1}\right)$ and marginally $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$.
(a) Derive $\operatorname{Var}\left(E\left(X_{2} \mid X_{1}\right)\right)$.
(b) Assume it is known that $\sigma_{1}=\sigma_{2}=1$. Find a number $1>c>0$ such that $P\left(\left|X_{1}-\mu_{1}\right|>2\right) \leq c$. Hint: Chebyshev's inequality.
6. Estimate the points you will get in the exam (excluding this problem).

