Note: The exam has 8 questions, for a total of 105 points. Explain your answer and write down necessary details of your calculation. No explanation/details = No credits. *Good Luck!*

You can use these facts if necessary: Let $Y \sim \chi_m^2$, a chi-square random variable with degree of freedom m. Then E(Y) = m and Var(Y) = 2m. Furthermore, if $Y_1, \dots, Y_n \sim_{iid} \chi_m^2$ then $\sum_{i=1}^n Y_i \sim \chi_{mn}^2$.

1. True or False? In the following questions, determine whether the statement is true or false. Justify/Explain your answer. Give an example or explain briefly if the answer is "True", otherwise, give a counterexample.

Let $X_1, X_2, ..., X_n \sim_{iid} f_{\theta}(x)$ with $\theta \in \mathcal{R} = (-\infty, \infty)$ and $X = (X_1, \cdots, X_n)'$.

- (5) (a) If a statistic T(X) is sufficient for θ then $(T(X))^4$ is also sufficient for θ .
- (5) (b) If $\delta(X)$ is a uniformly minimum variance unbiased estimator (UMVUE) for θ then $\delta(X)$ has the smallest mean square error among all estimators.
- (5) (c) If T(X) is a maximum likelihood estimator (MLE) for θ then $T^2(X)$ is a MLE for θ^2 .
- (5) (d) If S(X) is unbiased for θ then S(X) is sufficient for θ .
- (10) 2. Let X has a discrete pdf $f(x|\theta), \theta \in \Theta = \{0, 1, 2\}$ given below (For example, f(1|0) = 0.3, f(-1|1) = 0.4.)

heta			
\boldsymbol{x}	0	1	2
1	0.3	0.5	0.2
0	0.5	0.2	0.4
1	0.2	0.3	0.2

Find MLE of θ^3 . Is this MLE (Maximum Likelihood Estimator) unbiased?

- (10) 3. Let $X \sim U(0,1)$ and define $Y = I_{B_1}(X) + I_{B_2}(X)$ where $I_A(x)$, the indicator function of event A, takes value 1 if $x \in A$; 0, otherwise. Let $B_1 = (0.1, 0.3), B_2 = (0.3, 0.6)$. Determine the pdf of Y.
 - 4. Let $X, \dots, X_n \sim_{iid} U(-\theta, \theta)$ with $\theta > 0$ and its pdf

$$f_{\theta}(x) = \begin{cases} \frac{1}{2\theta} & \text{if } -\theta \le x \le \theta, \\ 0 & \text{otherwise.} \end{cases}$$

- (10) (a) Find a non-trivial sufficient statistic for θ .
- (10) (b) Find MLE for θ .

5. Let $X_1, \dots, X_n \sim_{iid} \text{Poisson}(\lambda)$ with $\theta > 0$ and its pdf

$$f_{\lambda}(x) = \begin{cases} e^{-\lambda} \frac{\lambda^{x}}{x!}, & \text{if } x = 0, 1, \dots; \\ 0 & \text{otherwise.} \end{cases}$$

Recall $E(X_i) = Var(X_i) = \lambda$, for all $i = 1, \dots, n$.

- (10) (a) Find a complete (non-trivial) sufficient statistic T(X) for λ .
- (10) (b) Compute $\delta(X) = E(X_1|T(X))$. Is it a UMVUE for λ ? Why?
- (10) 6. Let X_1, \ldots, X_n be *iid* sample from $N(0, \sigma^2), \sigma^2 > 0$ and its pdf

$$f_{\mu}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-x^2}{2\sigma^2}}, \quad x \in \mathcal{R}.$$

Derive the Cramér-Rao lower bound for estimating σ^2 and find a UMVUE for σ^2 .

- (10) 7. Let X_1, \dots, X_n be iid random variables with mean μ and variance σ^2 , both unknown. Show that $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a minimum variance unbiased linear estimator of μ .
 - (5) 8. Estimate the points you will get in the exam (excluding this problem).